Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18 dokumen yang sesuai dengan query
cover
Ghani Deori
"SARS-COV-2 merupakan jenis virus yang menyebabkan pandemi COVID-19. Pandemi COVID-19 pertama kali terdeteksi di Wuhan, Cina. Berdasarkan data World Health Organization (WHO), jumlah orang yang telah terpapar COVID-19 adalah 123.216.178 orang dan 2.714.517 orang meninggal akibat COVID-19 berdasarkan data www.who.int pada tanggal 23 Maret 2021. Pada skripsi ini, dilakukan klasifikasi untuk SARS-COV-2 dengan menggunakan sekuens protein dari SARS-COV-2. Sekuens protein SARS-COV- 2 di ekstraksi fitur dengan menggunakan package discere dari Python. Package discere akan menghasilkan 27 fitur, dimana fitur-fitur diseleksi dengan menggunakan metode LASSO (Least Absolute Shrinkage and Selection Operator). Setelah dilakukan seleksi fitur, dilakukan klasifikasi dengan menggunakan dua metode, yaitu metode Absolute Correlation Weighted Naïve Bayes dan metode Naïve Bayes. Rata-rata akurasi, sensitifitas, dan spesifisitas tertinggi untuk metode Absolute Correlation Weighted Naïve Bayes berturut-turut adalah 81,85%, 74,81%, dan 89,19%, sedangkan rata-rata akurasi, sensitifitas, dan spesifisitas tertinggi untuk metode Naïve Bayes berturut-turut adalah 81,44%, 74,58%, dan 88,24%. Terlihat bahwa metode Absolute Correlation Weighted Naïve Bayes mempunyai rata-rata akurasi, sensitifitas, dan spesifisitas yang lebih tinggi dibandingkan dengan metode Naïve Bayes.

SARS-COV-2 is the type of virus that causes the COVID-19 pandemic. The COVID-19 pandemic was first detected in Wuhan, China. Based on data from the World Health Organization (WHO), the number of people who have been exposed to COVID-19 is 123,216,178 people and 2,714,517 people died from COVID-19 based on data from www.who.int on March 23, 2021. In this paper, the SARS-COV-2 classification is done by using the protein sequence of SARS-COV-2. The SARS-COV-2 protein sequence will be feature extraction using the discere package from Python. The discere package will produce 27 features, where the features are selected using the LASSO (Least Absolute Shrinkage and Selection Operator) method. After feature selection, classification is carried out using two methods, namely the Absolute Correlation Weighted Naïve Bayes method and the Naïve Bayes method. The highest average accuracy, sensitivity, and specificity for the Absolute Correlation Weighted Naïve Bayes method are 81.85%, 74.81%, and 89.19%, respectively, whereas the highest average accuracy, sensitivity, and specificity for the Naïve Bayes method are 81.44%, 74.58%, and 88.24%, respectively. It can be seen that the Absolute Correlation Weighted Naïve Bayes method has a higher average accuracy, sensitivity, and specificity than the Naïve Bayes method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwi Retnoningrum
"Melalui teknologi, kegiatan sosial yang dahulu memerlukan kontak fisik kini dapat dilakukan jarak jauh melalui media sosial. Media sosial saat ini banyak digunakan untuk menyebarkan berbagai infromasi, baik mengungkapkan opini, perasaan, ataupun pendapat. Twitter memiliki pengguna akif terbanyak di Indonesia. Twitter merupakan salah satu sarana perusahaan untuk berkomunikasi dengan pelanggan. Salah satu perusahaan yang memanfaatkan twitter untuk berkomunikasi ke nasabahnya BNI. BNI memiliki jasa dan produk yang ditawarkan salah satunya yaitu Agen46. Agen46 merupakan mitra BNI dalam menyediakan layanan perbankan kepada masyarakat dalam rangka keuangan inklusif. Selain mitra BNI dalam penyediaan berbagai macam layanan perbankan, BNI Agen46 juga merupakan partner di dalam berbagai program pemerintah, seperti penyaluran bantuan sosial maupun subsidi untuk Keluarga Penerima Manfaat. Terdapat beberapa tweet yang cenderung mengarah ke ulasan yang negative, namun saat ini belum ada analisis sentimen terkait Agen46 berdasarkan data twitter. Penelitian ini bertujuan untuk membandingkan performa metode klasifikasi yang digunakan untuk sentiment analysis serta mencari topik terkait Agen46. Metode yang digunakan yang digunakan untuk pemodelan klasifikasi yaitu SVM, Naïve Bayes, dan KNN serta metode pemodelan topik yang digunakan yaitu LDA.Hasil dari penelitian menunjukkan bahwa SVM memiliki performa terbaik dengan nilai f1-score 91.25% dan akurasi 91.28%. Sedangkan Topik yang dihasilkan yaitu 2 topik kelas Positive (agen dapat memberikan tambahan penghasilan dan agen46 menjadi agen transformasi yang lebih dekat dengan nasabah), 2 topik kelas neutral (penyaluran bansos dapat dilakukan melalui agen46 dan selain melalui kantor cabang, internet banking, sms banking, transaksi juga bisa dilakukan di agen46), dan 6 topik kelas negative (permohonan buka blokir proses lama, belum ada respon saat gagal login, kendala mesin EDC Agen46, agen tidak dapat dihubungi, dan adanya ketidaknyamanan penyaluran bpnt).

Through technology, social activities that once required physical contact can now be done remotely through social media. Social media is currently widely used to disseminate various information, whether expressing opinions, feelings, or opinions. Twitter has the most active users in Indonesia. Twitter is one of the means for companies to communicate with customers. One company that utilizes twitter to communicate to its customers is BNI. BNI has services and products to offer, one of which is Agent46. Agen46 is a BNI partner in providing banking services to the community in the context of inclusive finance. In addition to BNI's partners in providing various banking services, BNI Agen46 is also a partner in various government programs, such as the distribution of social assistance and subsidies for Beneficiary Families. There are several tweets that tend to lean towards negative reviews, but currently, there hasn't been any sentiment analysis conducted regarding Agen46 based on Twitter data. This research aims to compare the performance of classification methods used for sentiment analysis and find topics related to Agent46. The methods used for classification modeling are SVM, Naïve Bayes, and KNN and the topic modeling method used is LDA.The results of the study show that SVM has the best performance with an f1-score value of 91.25% and an accuracy of 91.28%. While the topics generated are 2 Positive class topics (agents can provide additional income and agent46 becomes a transformation agent that is closer to customers), 2 neutral class topics (social assistance distribution can be done through agent46 and in addition to branch offices, internet banking, sms banking, transactions can also be done at agent46), and 6 negative class topics (unblock request is a long process, there is no response when login fails, Agent46 EDC machine constraints, agents cannot be contacted, and there is inconvenience in bpnt distribution)"
Jakarta: Fakultas Ilmu Komputer Universitas ndonesia, 2024
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Kresna Bima Sudirgo
"Biaya transportasi adalah salah satu komponen untuk mendapatkan keuntungan maksimal, tetapi sekarang tingkat emisi yang dihasilkan dari kegiatan transportasi juga menjadi perhatian di dunia industri. Model optimal komponen biaya dan emisi diperlukan untuk mendapatkan skenario terbaik yang memiliki biaya dan emisi rendah untuk mendukung komitmen industri ramah lingkungan. Untuk mencapai model yang dapat menyerupai kondisi asli di tempat tertentu kita akan menggunakan metode classifier Naïve Bayes. Model ini akan mengklasifikasikan tingkat keramahan lingkungan dan efisiensi biaya berdasarkan pengukuran berat dan volume menggunakan database yang diperoleh dari area tertentu, pada riset ini periset menggunakan beberapa skenario transportasi dari zona industri yang memiliki aktivitas melalui pelabuhan Tanjung Priok. Sebagai hasil dari pengklasifikasi alat yang dapat mengklasifikasikan tingkat hijau, tingkat biaya dan karakteristik barang yang sesuai (apakah itu cenderung memenuhi berat atau volume) berdasarkan metode pengklasifikasi Naïve Bayes.

Transportation costs are one of the components to get the maximum profit, but now the level of emissions resulting from transportation activities also becomes a concern in the industry. Optimum models of cost and emissions components required to get the best scenario that has low costs and emissions to support green industrial commitment. To achieve a model that can resemble the original conditions on the specific place we will use the Naïve Bayes classifier method. This model will classify the environmental friendliness and cost efficiency incurred with weight and volume measurement based on existing databases acquired from specific areas, at this study researcher using multiple transportation scenarios from industrial zones that had activity through the Tanjung Priok port. As a result of a classifier of tools that can classify green levels, cost levels and suitable characteristics of goods (whether it tends to meet weight or volume) based on Naïve Bayes classifier methods."
Jakarta: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fikri Afif Musyaffa
"Spam email merupakan salah satu masalah yang sangat sering dialami dalam komunikasi digital. Penelitian ini bertujuan untuk membandingkan efektifitas dua algoritma klasifikasi Naïve Bayes dan Support Vector Machine (SVM) dalam mendeteksi email spam. Tahapan penelitian dimulai dari pengumpulan data, pemrosesan teks seperti penghapusan angka, tanda baca, dan huruf kapital, penghapusan kata-kata umum, stemming, dan transformasi teks menggunakan metode Term Frequency-Inverse Document Frequency (TF-IDF). Dataset dibagi menjadi dua bagian yaitu data latih dan data uji dengan perbandingan 80% data latih dan 20% data uji. Hyperparameter yang digunakan pada metode Naive Bayes adalah nilai alpha, sedangkan pada SVM adalah nilai C, gamma dan kernel Radial Basis Function (RBF). Evaluasi menggunakan parameter metrik akurasi, presisi, recall, dan F1 score. Hasil penelitian menunjukkan metode SVM dengan hyperparameter tuning dan teks preprocessing mendapatkan nilai akurasi 98,74% sedangkan metode naïve bayes hanya 98,35%. Sehingga dapat disimpulkan bahwa metode Support Vector Machine lebih efektif dibandingkan metode Naïve Bayes dalam mendeteksi email spam.

Spam email is one of the most frequently encountered issues in digital communication. This study aims to compare the effectiveness of two classification algorithms, Naïve Bayes and Support Vector Machine (SVM), in detecting spam emails. The research stages begin with data collection, followed by text processing such as removing numbers, punctuation, and capital letters, removing common words, stemming, and text transformation using the Term Frequency-Inverse Document Frequency (TF-IDF) method. The dataset is divided into two parts: training data and testing data, with a ratio of 80% training data and 20% testing data. The hyperparameter used for the Naïve Bayes method is the alpha value, while for SVM, the hyperparameters are the values of C, gamma, and the Radial Basis Function (RBF) kernel. Evaluation is conducted using accuracy, precision, recall, and F1 score metrics. The results show that the SVM method, with hyperparameter tuning and text processing, achieved an accuracy of 98.74%, whereas the Naïve Bayes method only achieved 98.35%. Therefore, it can be concluded that the Support Vector Machine method is more effective than the Naïve Bayes method in detecting spam emails."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devina Itsnia Rizka
"ABSTRAK
Kanker serviks merupakan salah satu jenis kanker yang berbahaya. Berdasarkan data dari Departemen Kesehatan Republik Indonesia Depkes RI , kanker serviks merupakan salah satu penyakit kanker dengan prevelensi tertinggi sebesar 0.8 di Indonesia. Maka dari itu diperlukan tindakan pendeteksian dini dengan menggunakan microarray dataset. Microarray dataset mempunyai jumlah fitur yang banyak tetapi tidak semua fitur yang ada relevan dengan data yang digunakan. Oleh karena itu, perlu dilakukan pemilihan fitur untuk meningkatkan akurasi. Pemilihan fitur yang digunakan adalah Artificial Bee Colony ABC . Setelah dilakukan pemilihan fitur, akan dilakukan klasifikasi menggunakan metode klasifikasi Na ve Bayes. Hasilnya, didapatkan akurasi terbaik klasifikasi Na ve Bayes tanpa pemilihan fitur adalah 60 pada saat data training 90 dan untuk klasifikasi Na ve Bayes dengan menggunkan pemilihan fitur Artificial Bee Colony didapatkan akurasi tertinggi adalah 93.33333 . dengan fitur sebanyak 50 dan data training 90
.
ABSTRACT
Cervical cancer is one of the most dangerous cancer. Based on data from Departemen Kesehatan Republik Indonesia Depkes RI , cervical cancer is one of the diseases with the highest prevalence of 0.8 in Indonesia. Therefore, early detection action is needed with using microarray dataset. Microarray datasets have a large number of features but not all features are relevant to the data is used. Therefore, feature selection is needed to improve the accuracy. The feature selection that used is Artificial Bee Colony ABC . After feature selection process is done, Naive Bayes classification method will be implemented for classification process. As a result, the best accuracy of Na ve Bayes classification without feature selection is 60 with 90 training data and for Na ve Bayes classification using Artificial Bee Colony feature selection is 93.33333 with using 50 features selection and 90 training data."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mansyur M
"Kabupaten Pangkajene dan Kepulauan Pangkep merupakan daerah yang berada pada wilayah Provinsi Sulawesi Selatan. Pengelolaan pegawai negeri sipil PNS lingkup pemerintah Kabupaten Pangkep dilakukan oleh Badan Kepegawaian Pendidikan dan Pelatihan Daerah BKPPD Kabupaten Pangkep. BKPPD Kabupaten Pangkep memberikan layanan kepada pegawai mulai dari perekrutan, penempatan, mutasi, pendidikan dan pelatihan, kedisiplinan, pemberhentian, dan pensiun. BKPPD dalam melakukan mutasi masih mengalami kesulitan dalam menentukan pegawai yang sebaiknya dipindahkan karena tidak adanya pola yang menjadi acuan.
Penelitian ini bertujuan untuk mendapatkan pola mutasi dengan menggunakan data mining mengacu pada metodologi CRISP-DM berdasarkan data riwayat mutasi pada sistem aplikasi layanan kepegawaian SAPK . Teknik klasifikasi dengan algoritme Decision Tree, Na ve Bayes, dan Support Vector Machine SVM diterapkan pada data riwayat mutasi untuk mengetahui algoritme terbaik.Algoritme yang memiliki tingkat akurasi paling baik yaitu decision tree dengan nilai sebesar 72,76 . Pola mutasi dapat diimplementasikan oleh BKPPD untuk merancang dokumen redistribusi pegawai lingkup Pemerintah Kabupaten Pangkep.

Pangkajene and Kepulauan Pangkep District is an area located in South Sulawesi Province. The management of civil servants PNS scope of government of Pangkep District is done by Regional Civil Servants, Education, and Training BKPPD of Pangkep District. BKPPD provides services to civil servants ranging from recruitment, placement, transfer, education and training, discipline, dismissal, and retirement. BKPPD in conducting mutations still have difficulty in determining which civil servants should be moved because of the absence of a reference pattern.
This study aims to obtain mutation patterns using data mining refers to the CRISP-DM methodology based on historical data on the employment service application system SAPK . Classification techniques with Decision Tree, Na ve Bayes, and Support Vector Machine SVM algorithms are applied to the mutation history data to find the best algorithm.Algorithm that has the best accuracy is the decision tree with a value of 72,76 . The mutation pattern can be implemented by BKPPD to design the redistribution document of Pangkep District Government civil servants.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ricco Yhandy Fernando
"Penyakit pada paru-paru merupakan gangguan yang cukup serius dimana dapat menyerang sistem pernapasan manusia dan bisa berakibat fatal jika tidak ditangani dengan serius. Pada saat ini deteksi penyakit pada paru-paru masih dilakukan secara manual oleh para dokter ahli, namun proses secara manual memakan waktu lama. Oleh karena itu, dalam penelitian ini dibuat sistem yang dapat mendeteksi dan mengklasifikasi penyakit paru-paru dengan otomatis. Dalam penelitian ini akan digunakan dua metode yaitu Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes . Data yang digunakan dalam penelitian ini adalah data screening yang berjumlah seratus data pasien, data di dapatkan dari salah satu sumber yang memiliki data primer yaitu salah satu rumah sakit di Yogyakarta. Penelitian ini menggunakan dua belas gejala paru-paru dan diklasifikasikan kedalam lima kelas penyakit paru-paru yaitu tuberkulosis, penyakit paru obstruktif kronis, pneumonia, asma bronkial, kanker paru. Sistem klasifikasi akan di implementasikan menggunakan bahasa pemrograman PHP. Pengujian kinerja klasifikasi menggunakan Confusion Matrix dan aplikasi diuji dengan menggunakan System Usability Scale. Penelitian ini menghasilkan sistem klasifikasi penyakit paru-paru dengan menggunakan metode Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes, dari hasil pengujian akurasi Confusion Matrix pada algoritma Support Vector Machine mendapatkan hasil akurasi 93,9% , recall 92%, precison 79%, dan f1 score 54%, sedangkan pada Ensemble Bagging Gausian Naïve Bayes mendapatkan hasil akurasi 88,9 % recall 92%, precision 79%, f1 score 54%, serta pengujian sistem menggunakan metode System Usability Scale nilai yang diperolah sebesar 73 atau mendapatkan grade B.

Lung disease is a serious disorder that can attack the human respiratory system and can be fatal if not treated seriously. Currently, lung disease detection is still done manually by expert doctors, but the manual process takes a long time. Therefore, in this research a system was created that can detect and classify lung diseases automatically. In this research, two methods will be used, namely Support Vector Machine and Ensemble Bagging Gaussian Naïve Bayes. The data used in this research is screening data consisting of one hundred patient data, the data was obtained from one source that has primary data, namely one of the hospitals in Yogyakarta. This study used twelve lung symptoms and classified them into five classes of lung disease, namely tuberculosis, chronic obstructive pulmonary disease, pneumonia, bronchial asthma, lung cancer. The classification system will be implemented using the PHP programming language. Classification performance testing uses the Confusion Matrix and the application is tested using the System Usability Scale. This research produces a lung disease classification system using the Support Vector Machine method and Ensemble Bagging Gaussian Naïve Bayes, from the results of Confusion Matrix accuracy testing on the Support Vector Machine algorithm, the results are 93.9% accuracy, 92% recall, 79% precision, and f1 score was 54%, while Ensemble Bagging Gausian Naïve Bayes obtained accuracy results of 88.9%, recall 92%, precision 79%, f1 score 54%, and system testing using the System Usability Scale method obtained a score of 73 or got grade B.  "
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Seiring derasnya arus informasi berita elektronik, timbul kebutuhan untuk mengatur informasi tersebut sehingga pengguna dapat mengaksesnya dengan lebih mudah. Akan tetapi jika pengelompokan berita dilakukan secara manual, maka akan memakan waktu yang lama dan mahal. Klasifikasi dokumen secara otomatis sekiranya diperlukan untuk mengurangi biaya dan mempercepat pengaturan informasi. Salah satu metode yang dapat digunakan dalam pengklasifikasian yaitu Naïve Bayes Classifier. Fokus penelitian ini adalah meneliti karakteristik Naïve Bayes Classifier untuk memperoleh kinerja yang optimal dalam proses klasifikasi. Cara yang diterapkan pada penelitian ini yaitu dengan mengujicobakan metode tersebut dengan 3 perlakuan yaitu membandingkan kinerja sistem terhadap stemming maupun non stemming, berbagai proporsi dokumen pembelajaran dan jumlah kategori dalam klasifikasi. Tahapan penelitian dilakukan mulai dari studi pustaka, menerapkan metode Naïve Bayes Classifier dalam pengklasifikasian berita berbahasa Indonesia, melakukan uji coba dan analisa mengenai karakteristik metode ini serta menarik kesimpulan dari hasil analisa. Penelitian dilakukan terhadap 1351 dokumen berita berbahasa Indonesia dari situs www.suarapembaruan.com yang diambil pada bulan Januari 2004 sampai dengan bulan November 2004.
Hasil penelitian menunjukan bahwa Naive Bayes Classifier merupakan metode yang memiliki tingkat akurasi yang tinggi. Kinerja akan lebih baik jika metode ini diterapkan dengan stemming dibanding tanpa stemming walaupun selisih kinerja keduanya tidak terpaut jauh yaitu sekitar 3,87%. Selain itu, hasil penelitian juga menunjukan bahwa kinerja metode ini dipengaruhi oleh jumlah dokumen pembelajaran. Semakin banyak dokumen pembelajaran yang digunakan, maka akan semakin tinggi tingkat keakuratan metode ini. Hal ini terbukti dari uji coba kombinasi stemming dengan proporsi dokumen pembelajaran 90% yang mampu mencapai kinerja tertinggi selama penelitian yaitu recall sebesar 93,5%, precision 94,125% dan F-measure 93,81%. Hal menarik yang terjadi adalah akurasi masih tetap relatif tinggi walaupun dokumen pembelajaran secara ekstrim dikurangi menjadi 10%. Hal ini ditunjukan dengan recall sebesar 89,82%, precision 90,36% dan F-measure 90,1%.
Pada penelitian ini juga mengamati apakah Naïve Bayes Classifier merupakan metode klasifikasi yang stabil. Hal ini diteliti dengan membandingkan kinerja sistem terhadap banyaknya jumlah kategori dalam klasifikasi. Hasilnya ternyata jumlah kategori tidak mempengaruhi kinerja metode ini. NBC merupakan metode yang stabil jika dilihat dari segi kuantitas kategori."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khansa Azmi Nur Johim
"Angka kematian ibu adalah tantangan kesehatan masyarakat di dunia, negara-negara berkembang menyumbang 99% kematian ibu secara global. Diperkirakan 15% sampai 20% ibu hamil dari seluruh ibu hamil yang ada akan mengalami keadaan risiko tinggi dan mengalami komplikasi maternal. Asuhan kebidanan komprehensif berbasis bukti yang diberikan oleh bidan maupun dokter spesialis kandungan diharapkan dapat memprediksi komplikasi maternal untuk mencegah kematian ibu. Sistem prediksi komplikasi maternal melalui penilaian usia kehamilan, tanda-tanda vital, tinggi fundus uteri, denyut jantung janin, presentasi, kontraksi, plasenta, robekan, perdarahan, luka perineum, hemoglobin dan proteinurin dengan menggunakan pencatatan dan pelaporan manual membutuhkan waktu untuk mengambil keputusan. Tujuan penelitian ini adalah membangun prototipe aplikasi untuk prediksi komplikasi maternal di Rumah Sakit Mitra Bangsa Pati dalam rangka memprediksi komplikasi maternal, dan merancang basis data maternal dan membuat laporan secara elektronik. Rancangan pengembangan sistem menggunakan pendekatan prototyping. Metode prediksi aplikasi komplikasi maternal berbasis machine learning menggunakan algoritma Naïve Bayes Classifier (NBC). Aplikasi dapat memberikan hasil prediksi komplikasi maternal secara realtime (<3 detik), berupa perdarahan, preeklampsia, infeksi mana nifas, hiperemesis gravidarum, retensio plasenta dan robekan jalan lahir. Pengumpulan data dari buku register, buku KIA dan rekam medis. Dari hasil uji dengan 7-fold cross validation diperoleh nilai akurasi, presisi dan recall adalah 89.2%, 88.8%, dan 89.3% dengan jumlah data latih 2448 data dan data uji 272 data. Pemanfaatan data hasil prediksi yaitu sebagai dasar untuk pengambilan keputusan.

Maternal mortality is a challenge for public health field in the world and developing countries account for 99% of maternal deaths globally. It is estimated that 15% to 20% of all pregnant women will experience a high risk state and obstetric complication. The evidence-based midwifery comprehensive guideline provided by the midwife is expected to detect early risk factors for pregnancy, labor, and postpartum women before complication occurs. Maternal complications prediction system through assessment of gestational age, vital signs, high fundal uterine, fetal heart rate, presentation, contractions, placenta, tears, bleeding, perineal wounds, hemoglobin and proteinurin using manual recording and reporting takes time to make decisions. The purpose of this study was to build a prototype application for predicting maternal complications at Rumah Sakit Mitra Bangsa Pati in order to predict maternal complications, and design a maternal database and make reports electronically. The system development design uses a prototyping approach. The prediction method for the application of machine learning maternal complications uses the Naïve Bayes Classifier (NBC) algorithm. Applications can provide predictive results for maternal complications in real time (<3 seconds), such as bleeding, preeclampsia, infections where parturition, hyperemesis gravidarum, retention of the placenta and tear of the birth canal. Collecting data from register books, KIA books and medical records. From the results of the test with 5-fold cross validation, the accuracy, precision and recall value were 89.2%, 88.8%, dan 89.3% with 2,448 training data and 272 testing data. The use of prediction data is a basis for decision making."
2019
T52948
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Zuhri Bayhaqi
"Analisis sentimen terhadap opini publik di Twitter dapat memberikan wawasan yang berharga dalam memahami dukungan dan pemikiran masyarakat terkait calon presiden dan isu-isu terkait Pilpres 2024. Penelitian ini bertujuan untuk mengembangkan sistem analisis sentimen terhadap opini publik tentang Pilpres Indonesia 2024 yang tersebar di media sosial Twitter dalam bahasa Indonesia. Algoritma yang digunakan dalam pengembangan sistem tersebut adalah Naïve Bayes, sebuah algoritma klasifikasi yang telah terbukti efektif dalam analisis sentimen. Data yang digunakan dalam penelitian ini adalah kumpulan tweet atau cuitan yang diperoleh dari Twitter dengan menggunakan teknik web scraping. Persentasi Akurasi pada uji coba setiap skenario yang dilakukan mendapatkan hasil terbaik dengan nilai 81,18% untuk Skenario 1, 72,58% untuk Skenario 2, 65,05% untuk Skenario 3, dan 80,11% untuk Skenario 4. Hasil evaluasi model sistem yang dikembangkan terhadap klasifikasi sebenarnya menunjukkan bahwa analisis sentimen menggunakan algoritma Naïve Bayes dapat memberikan hasil yang baik tentang sentimen opini publik terkait Pilpres Indonesia 2024 di media sosial Twitter. Pengembangan sistem yang dikerjakan memberikan hasil model yang dapat melakukan analisis sentimen secara mandiri dengan akurasi yang tinggi terhadap opini publik terkait Pilpres Indonesia 2024 dengan nilai rata-rata 81,18%. Hasil analisis sentimen ini dapat membantu pihak-pihak terkait, termasuk calon presiden dan tim kampanye mereka, untuk memahami sejauh mana opini publik mendukung atau menentang mereka.

Sentiment analysis of public opinion on Twitter can provide valuable insight in understanding public support and thoughts regarding presidential candidates and issues related to the 2024 presidential election. This research aims to develop a sentiment analysis system for public opinion about the 2024 Indonesian Presidential Election shared on Twitter social media. in Indonesian. The algorithm used in developing the system is Naïve Bayes, a classification algorithm that has been proven effective in sentiment analysis. The data used in this research is a collection of tweets obtained from Twitter using web scraping techniques. The percentage of accuracy in testing each scenario carried out obtained the best results with a value of 81.18% for Scenario 1, 72.58% for Scenario 2, 65.05% for Scenario 3, and 80.11% for Scenario 4. Model evaluation results system developed for classification actually shows that sentiment analysis using the Naïve Bayes algorithm can provide good results regarding public opinion sentiment regarding the 2024 Indonesian Presidential Election on Twitter social media. The system development carried out provides model results that can carry out sentiment analysis independently with high accuracy regarding public opinion regarding the 2024 Indonesian Presidential Election. The results of this sentiment analysis can help related parties, including presidential candidates and their campaign teams, to understand the extent of opinion. they. society supports or opposes them."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>