Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 17 dokumen yang sesuai dengan query
cover
Siti Salma Hasanah
Abstrak :
ABSTRACT
Model hurdle adalah model alternatif untuk mengatasi penyebaran berlebihan (varians datanya adalah lebih tinggi dari nilai rata-rata) yang disebabkan oleh kelebihan nol. Model rintangan dapat memodelkan secara terpisah variabel respons yang memiliki nilai nol dan positif, melibatkan dua proses yang berbeda. Proses pertama adalah proses biner yang menentukan apakah variabel respon memiliki nilai nol atau nilai positif, dan dapat dimodelkan dengan biner model, menggunakan regresi logistik. Untuk variabel respons positif, kemudian lanjutkan ke proses kedua, yaitu proses yang hanya mengamati jumlah positif. Yang positif count dapat dimodelkan dengan model Zero-Truncated menggunakan regresi Poisson. Rintangan model juga dikenal sebagai model dua bagian. Estimasi parameter menggunakan Bayesian metode. Kombinasi informasi sebelumnya dengan informasi dari data yang diamati membentuk distribusi posterior yang digunakan untuk memperkirakan parameter. Distribusi posterior bentuk yang diperoleh tidak tertutup, sehingga diperlukan teknik komputasi, yaitu Markov Chain Monte Carlo (MCMC) dengan algoritma Gibbs Sampling. Metode ini diterapkan ke data Parkinson untuk memodelkan frekuensi komplikasi motorik pada 300 Parkinsonpasien. Data tersebut digunakan dari Parkinson's Progressive Markers Initiative (PPMI, 2018). Hasil yang diperoleh adalah MDS-UPDRS (Movement Disorder Society-Unified Skala Peringkat Penyakit Parkinson) bagian 1, MDS-UPDRS bagian 2, dan MDS-UPDRS bagian 3 terkait secara signifikan MDS-UPDRS bagian 4 di kedua tahap.
ABSTRACT
The obstacle model is an alternative model for overcoming excessive spread (the data variant is higher than the average value) which is questioned by zero excess. The obstacle model can separately model response variables that have zero and positive values, involving two different processes. The first process is a binary process that determines whether the response variable has a zero value or a positive value, and can be modeled with a binary model, using logistic regression. For positive response variables, then proceed to the second process, which is a process that is only positive. The positive one calculated can be modeled with a Zero-Truncated model using Poisson regression. The Obstacle Model is also known as the two part model. Parameter estimation using the Bayesian method. The combination of previous information with information from data collected collects the distributions used for parameter estimation. The posterior distribution of the obtained form is not closed, computational techniques are needed, namely Markov Chain Monte Carlo (MCMC) with Gibbs Sampling algorithm. This method is applied to Parkinson's data to model the frequency of motor complications in 300 Parkinson's patients. The data is used from Parkinson's Progressive Markers Initiative (PPMI, 2018). The results obtained are MDS-UPDRS (Movement Disorder-Community Parkinson's Disease Assessment Scale) part 1, MDS-UPDRS part 2, and MDS-UPDRS part 3 which significantly related MDS-UPDRS part 4 in both glasses.
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sihombing, Pardomuan Robinson
Abstrak :
Saat ini, Indonesia menjadi negara ketiga dengan jumlah perokok tertinggi di dunia setelah Cina dan India. Kerugian makro ekonomi akibat konsumsi rokok di Indonesia pada 2015 mencapai hampir Rp 600 triliun. Ada banyak faktor yang dapat mengakibatkan seseorang mengkonsumsi rokok di antara dari segi sosio ekonomi, demografi, lingkungan, budaya dan lainnya. Mengingat konsumsi rokok yang tinggi di Indonesia serta faktor risiko yang terjadi akibat mengkonsumsi rokok, maka penelitian ini ingin mengetahui faktor-faktor yang mempengaruhi jumlah batang rokok yang dihisap. Jumlah rokok yang dihisap setiap hari merupakan data cacah nonnegatif. Untuk pemodelan variabel respon yang berupa data cacah, model yang biasa digunakan adalah regresi Poisson, regresi Binomial, dan regresi Negative Binomial. Konsumsi rokok dalam batang per hari merupakan salah satu kasus data cacahan dengan banyak nilai 0 (excess zero). Untuk mengatasi masalah overdispersion yang terjadi, salah satu cara adalah menggunakan Zero Inflated Negative Binomial (ZINB) atau Hurdle Negative Binomial (HNB). Kedua model tersebut digunakan untuk memodelkan data count dengan banyak nilai 0 pada respon dan terjadi overdispersion. Data konsumsi rokok yang dihasilkan dari IFLS memiliki nilai zero excess dan terdapat overdispersi. Model ZINB lebih baik daripada model HNP karena memiliki nilai AIC dan BIC yang lebih kecil. Pada model log hanya variabel penghasilan yang mempengaruhi peluang mengkonsumsi merokok. pada model logit hanya variabel dummy SMP yang tidak mempengaruhi peluang untuk tidak mengkonsumsi rokok, sedangkan variabel lainnya pendidikan, kesejahteraan dan penghasilan mempengaruhi peluang tidak mengkonsumsi rokok. Semakin tinggi pendidikan dan kesejaterahan akan meningkatkan peluang orang untuk tidak merokok
Jakarta: Kementerian PPN/Bappenas, 2020
330 BAP 3:1 (2020)
Artikel Jurnal  Universitas Indonesia Library
cover
Nishfu Laili Barokah
Abstrak :
Over-dispersi dan under-dispersi adalah beberapa masalah umum ketika pemodelan dihitung data. Karena kondisi seperti itu, distribusi Poisson tidak lagi cocok untuk data cacah pemodelan, karena melanggar asumsi kesetaraan (mean equal variance). Di studi sebelumnya, beberapa distribusi telah diperkenalkan sebagai alternatif untuk Distribusi poisson, untuk menangani kondisi dispersi. Namun, distribusinya bisa hanya menangani overdispersion atau underdispersion. Oleh karena itu, distribusi baru adalah dikembangkan untuk menangani data dengan dispersi kurang dan penyebaran berlebihan. Distribusi ini adalah disebut distribusi Conway Maxwell Poisson (COM-Poisson). COM-Poisson distribusi pertama kali diperkenalkan oleh Conway dan Maxwell pada tahun 1962, sebagai solusi untuk sistem antrian dengan tarif layanan yang tergantung pada negara. Modifikasi Poisson ini distribusi memiliki dua parameter, λ dan parameter tambahan v, yang disebut dispersi parameter. Karena parameter tambahan, distribusi ini dapat digunakan di dispersi berlebihan (jika v <1), equidispersion (jika v = 1), dan dispersi kurang (jika v> 1). Melalui contoh data nyata, tesis ini akan menggunakan distribusi COM-Poisson untuk pemodelan data dengan kondisi penyebaran berlebihan dan kurang penyebaran. ......Over-dispersion and under-dispersion are some common problems compiling calculated data modeling. Because of such conditions, the Poisson distribution is no longer suitable for modeling data, because of the testing of the equality equation (mean equal variance). In previous studios, several distributions have been introduced as alternatives to Poisson distribution, to support the terms of dispersion. However, its distribution can only overcome overdispersion or underdispersion. Therefore, new distributions have been developed to support data with less dispersion and excessive distribution. This distribution is called the Conway Maxwell Poisson (COM-Poisson) distribution. COM-Poisson distribution was first introduced by Conway and Maxwell in 1962, as a solution for queuing systems with service rates that depend on the country. This Poisson modification distribution has two parameters, λ and an additional parameter v, which is called parameter dispersion. Because of the additional parameters, this distribution can be used in excessive dispersion (if v <1), equation (if v = 1), and less dispersion (if v> 1). Through real data examples, this thesis will use the COM-Poisson distribution for data modeling with the use of redundant and less-spread distributions.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fara Fathia
Abstrak :
Tesis ini bertujuan untuk mengestimasi premi murni terhadap data zero inflated klaim asuransi kecelakaan melalui Generalized Linear Model (GLM). Penelitian ini berfokus pada pemodelan data frekuensi klaim dengan zero inflated melalui regresi Zero Inflated Poisson (ZIP) untuk menjembatani kesenjangan yang ada. Berdasarkan peneltian-penelitian terdahulu, frekuensi klaim kerap diasumsikan berdistribusi Poisson dalam perhitungan premi murni dengan GLM tanpa memperhatikan kehadiran excess zeros. Sedangkan estimasi parameter severity (besar klaim) ditentukan melalui regresi Gamma. Selajutnya premi murni diestimasi dengan melakukan perkalian antara frekuensi dan severity atas asumsi independensi. Data yang digunakan dalam penelitian merupakan data sekunder yang diperoleh dari PT ABC sebagai asuransi kecelakaan kerja. 1000 sample data terdiri dari tahun 2017, meliputi frekuensi klaim dan severity yang merupakan variabel dependen, serta data tertanggung yang diataranya adalah usia, jenis kelamin, kelompok lingkungkan kerja, dan masa aktif polis asuransi (exposure) sebagai variabel independen. Hasil penelitian menunjukkan bahwa model regresi ZIP sesuai untuk mengestimasi frekuensi klaim pada data zero inflated PT ABC. Model regresi Gamma juga menunjukkan kesesuaian dalam mengestimasi severity data PT ABC. Estimasi premi murni yang dihasilkan menunjukkan bahwa jenis kelamin tidak berpengaruh signifikan terhadap besar premi murni. Usia dan kelompok risiko lingkungan kerja merupakan variabel yang paling signifikan terhadap besar premi murni. Frekuensi klaim kecelakaan kerja tertinggi dimiliki tertanggung dengan usia 18 tahun. Frekuensi klaim menurun seiring pertambahan usia baik pada tertanggung wanita maupun pria, namun kembali meningkat di usia akhir 50 tahun hingga 56 tahun pada tertanggung pria. Besar severity tidak selalu sejalan dengan premi murni sehingga dapat disimpulkan bahwa frekuensi klaim merupakan komponen yang lebih berpengaruh terhadap pergerakan premi murni. Premi murni yang dihasilkan lingkungan kerja dengan risiko rendah lebih besar dari pada lingkungan kerja dengan risiko sedang.
This thesis aims to estimate pure premium towards zero inflated claim data of accident insurance through the Generalized Linear Model (GLM). This study focuses on modeling the claim frequency data with excess zeros through the Zero Inflated Poisson (ZIP) regression to bridge the gap between previous studies where it is generally assumed to be distributed in Poisson. Gamma regression is used to estimate the parameter of severity. Pure premiums are estimated by multiplying the frequency and severity in assumption of independence. The data is obtained from accident insurance company PT ABC. 1000 data samples consist of 2017, including the claim frequency and severity as dependent variable, as well as age, sex, occupational environment, and the active period of the insurance policy (exposure) as independent variables. The results indicate that ZIP regression model is suitable for estimating the claim frequency. The Gamma regression model also shows conformity in estimating the severity. The estimation of pure premiums shows that gender does not have a significant effect on its ammount, while age and occupational environment is the most significant variable. The severity is not always in line with pure premium so it can be concluded that the frequency of claims is a component that has more influence on the movement of pure premiums. Pure premiums produced by a work environment with a low risk are greater than those in a medium-risk work environment. The highest amount of pure premium is on 18 years insureds. Pure premium decline on age, both for the insured women and men, and increased on the end of 50 years to 56 years in the insured man.
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2019
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wildan Alrasyid
Abstrak :
Hepatitis merupakan peradangan hati akibat infeksi virus. Semua virus hepatitis dapat menyebabkan hepatitis akut. Penyakit hepatitis merupakan penyakit menular yang menjadi masalah kesehatan yang besar di masyarakat karena penularannya yang relatif mudah. DKI Jakarta merupakan provinsi di Indonesia dengan kasus hepatitis akut tertinggi. Oleh karena itu, perlu dilakukan upaya untuk mengurangi jumlah penderita hepatitis akut khususnya di DKI Jakarta. Beberapa faktor dianggap berkaitan erat dengan tingginya kasus hepatitis akut. Tujuan dari penelitian ini adalah untuk menemukan faktor-faktor yang secara signifikan dapat menjelaskan kasus penyakit hepatitis di DKI Jakarta agar dapat diambil tindakan untuk pencegahan munculnya kasus hepatitis akut di masyarakat. Data pada penelitian ini diperoleh dari dinas kesehatan DKI Jakarta tahun 2021. Pemodelan yang sesuai untuk jumlah penderita hepatitis akut adalah model regresi Poisson karena jumlah penderita hepatitis akut merupakan count data. Dalam mengatasi kasus overdispersi pada model regresi Poisson digunakan model regresi Generalized Poisson dan model regresi Binomial Negatif yang lebih sesuai sebagai alternatifnya. Pada penelitian ini, estimasi parameter model dilakukan dengan menggunakan metode Maximum Likelihood Estimation (MLE) yang dibantu dengan metode Newton Raphson. Berdasarkan nilai AIC dari pemodelan yang dilakukan, diperoleh bahwa model terbaiknya adalah model Generalized Poisson Regression. Hasil analisis menemukan 1 variabel yang secara signifikan menjelaskan jumlah penderita hepatitis akut di DKI Jakarta yaitu jumlah penderita diebetes. ......Hepatitis is an inflammation of the liver due to a viral infection. All hepatitis viruses can cause acute hepatitis. Hepatitis is an infectious disease which is a major public health problem because of its relatively easy transmission. DKI Jakarta is the province in Indonesia with the highest cases of acute hepatitis. Therefore, it is necessary to make efforts to reduce the number of acute hepatitis sufferers, especially in DKI Jakarta. Several factors are considered to be closely related to the high incidence of acute hepatitis. The aim of this research is to find factors that can significantly explain cases of hepatitis in DKI Jakarta so that action can be taken to prevent the emergence of cases of acute hepatitis in the community. The data for this study were obtained from the DKI Jakarta health office in 2021. The appropriate modeling for the number of acute hepatitis sufferers is the Poisson regression model because the number of acute hepatitis sufferers is count data. In dealing with cases of overdispersion in the Poisson regression model, Generalized Poisson Regression model and Negative Binomial regression model is used which is more suitable as an alternative. In this study, model parameter estimation was carried out using the Maximum Likelihood Estimation (MLE) method assisted by the Newton Raphson method. Based on the AIC value of the modeling performed, it is found that the best model is the Generalized Poisson Regression model. The results of the analysis found 1 variable that significantly explained the number of acute hepatitis sufferers in DKI Jakarta, namely the number of diabetics.
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Risna Diandarma
Abstrak :
ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).
ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1).
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saskia Oktavia Zarfa
Abstrak :
Kematian balita merupakan indikator utama kesehatan anak dan pembangunan bangsa secara keseluruhan, karena mencerminkan kondisi sosial, ekonomi, dan lingkungan. Angka kematian balita sebagai barometer sosial ekonomi dan kesehatan telah dimasukkan dalam Sustainable Development Goals (SDGs) dengan target baru untuk menurunkan angka kematian balita di dunia secara keseluruhan menjadi kurang dari 25 per 1000 kelahiran hidup di tahun 2030. Tujuan penelitian ini adalah untuk mengetahui faktor apa yang memengaruhi jumlah kasus kematian balita di Pulau Jawa. Variabel respon penelitian ini adalah jumlah kasus kematian balita yang merupakan data diskrit  dengan kondisi overdispersi. Penelitian ini menggunakan model Geographically Weighted Negative Binomial Regression (GWNBR) yang merupakan pengembangan regresi Binomial Negatif dengan memperhitungkan pengaruh spasial. Data yang digunakan pada penelitian ini mengandung missing value sehingga dilakukan penanganan dengan imputasi data menggunakan Classification and Regression Tree (CART). Model yang digunakan untuk menganalisis jumlah kasus kematian balita adalah model GWNBR dengan fungsi pembobot kernel Adaptive Gaussian. Hasil dari analisis tersebut menunjukkan bahwa terdapat 5 variabel prediktor yang secara signifikan memengaruhi jumlah kasus kematian balita di seluruh Kabupaten/Kota di pulau Jawa yaitu variabel kecukupan air bersih (AIRB), proporsi diare pada balita (DIARE), kecukupan jumlah dokter (DOK), cakupan penimbangan balita (CPB) dan cakupan Imunisasi Dasar Lengkap (IDL). ......Under-five mortality is the main indicator of child health and the development of the nation as a whole, because it reflects social, economic and environmental conditions. The under-five mortality rate as a socio-economic and health barometer has been included in the Sustainable Development Goals (SDGs) with a new target to reduce the world under-five mortality rate as a whole to less than 25 per 1000 live births in 2030. The purpose of this study was to determine what factors which affects the number of under-five mortality cases in Java. The response variable of this research is the number of under-five mortality cases which are discrete data with overdispersion conditions. This study uses a Geographically Weighted Negative Binomial Regression (GWNBR) model which is the development of Negative Binomial regression by taking into account the spatial effect. The data used in this study contains missing values ​​so that it is handled by imputing data using the Classification and Regression Tree (CART). The model used to analyze the number of under-five mortality cases is the GWNBR model with the Adaptive Gaussian kernel weighting function. The results of the analysis show that there are 5 predictor variables that significantly affect the number of cases of under-five mortality in all districts/cities on the island of Java, namely the clean water adequacy variable (AIRB), the proportion of diarrhea in children under five (DIARE), the adequacy of the number of doctors (DOK), coverage of under-five weighing (CPB) and coverage of Complete Basic Immunization (IDL).
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamdi Ranuharja
Abstrak :
Pemodelan jumlah klaim mengklaim salah satu topik paspor adalah praktik lapangan. masalah ini sering ditemukan dalam model ingthataatais persebaran. Poisson dributiontion yang digunakan dalam pemodelan sumber klaim tidak dapat digunakan sebagai fakta overproperti penyebaran.Oleh karena itu, distribusi yang distandarisasi di luar negeri dapat dimanfaatkan jumlah klaim yang mengklaim pengungkapan properti yang dibutuhkan. Dalam tulisan ini, analternatif menerima distribusi yang dihasilkan, yaitu Distribusi Umum Biomial Negatif-Negatif Distribusi adalah distribusi distribusi negatif negatif dan distribusi Membalik Gaussie dan distribusi metameterisasi pada parameter negatif Distribusi binomial yaitu p = exp (), di mana nilai variabel acak acak yang didistribusikan Inverse Gaussian. Distribusi eksternal ini adalah unimodal, hasa tebal thailand hasa positif menghasilkan kewajiban koefisien. Dalam tesis tingkat bawah, kemungkinan serangan dan komitmen faktorial dari distribusi NB-IG yang didistribusikan. Berarti, varians, skewness danurturtasthasic properties ofNB-IG distribusi disajikan dan parameter pengujian diperlakukan melalui survival maksimum maksimum metode estimasi. Kepenuhan distribusi NB-IG diilustrasikan oleh data nyata set.
One topic of passports is field practice. this problem is often found in modeling the data distribution. tion used in modeling claims sources cannot be used as a fact of overproperty distribution. Therefore, standardized distributions abroad can be used the number of claims claimed In this paper, accept the resulting distribution, namely General Negative-Negative Biomial Distribution, Distribution is negative negative distribution and Gaussie Reverse distribution and metameterization distribution on negative parameters, binomial distribution ie p = exp (), where the variable value Varies Published InverseGaussian. This external distribution is immunodal, Thailand has a positive potential to produce the coefficient obligation. In the lower-level thesis, attacks and factorial commitments from the distributed NB-IG distribution are published. Means, variants, skewness and strictness of the properties of NB-IG distribution are presented and test parameters are approved through maximum maximum survival estimation method. The fullness of the NB-IG distribution is illustrated by real data sets.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alfifah Meytrianti
Abstrak :
Distribusi Poisson adalah distribusi yang biasa digunakan untuk memodelkan count data dengan asumsi nilai mean dan variansi memiliki nilai yang sama (ekuidispersi). Dalam kenyataannya, sebagian besar count data memiliki nilai mean yang lebih kecil dari variansi (overdispersi) dan distribusi Poisson tidak cocok digunakan untuk memodelkannya. Dengan demikian, beberapa distribusi alternatif telah diperkenalkan untuk mengatasi masalah ini. Salah satunya adalah distribusi Shanker yang hanya memiliki satu parameter. Namun, distribusi Shanker adalah distribusi kontinu, sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, distribusi baru ditawarkan yaitu distribusi Poisson-Shanker. Distribusi Poisson-Shanker diperoleh dengan mencampurkan distribusi Poisson dan Shanker, dengan distribusi Shanker sebagai mixing distribution. Hasil yang diperoleh adalah distribusi campuran yang memiliki satu parameter dan dapat digunakan untuk memodelkan count data yang overdispersi. Dalam tugas akhir ini, diperoleh bahwa distribusi Poisson-Shanker memiliki beberapa sifat yaitu unimodal, overdispersi, hazard rate naik, serta diperoleh koefisien kurtosis dan skewness. Selain itu, diperoleh pula empat raw momen dan momen sentral pertama. Metode yang digunakan untuk menaksir parameter adalah metode maximum likelihood dan diselesaikan dengan menggunakan iterasi numerik. Dilakukan ilustrasi pada data untuk menggambarkan distribusi Poisson-Shanker. Karakteristik parameter dari distribusi Poisson-Shanker diperoleh dengan simulasi numerik dengan beberapa variasi nilai parameter dan ukuran sampel. Hasil yang diperoleh adalah rata-rata nilai MSE dan bias taksiran parameter akan naik seiring pertambahan nilai parameter untuk suatu nilai n dan akan turun seiring pertambahan nilai n untuk suatu nilai parameter.
Poisson distribution is a common distribution for modelling count data with assumption mean and variance has the same value (equidispersion). In fact, most of the count data have mean that is smaller than variance (overdispersion) and Poisson distribution cannot be used for modelling this kind of data. Thus, several alternative distributions have been introduced to solve this problem. One of them is Shanker distribution that only has one parameter. Since Shanker distribution is continuous distribution, it cannot be used for modelling count data. Therefore, a new distribution is offered that is Poisson-Shanker distribution. Poisson-Shanker distribution is obtained by mixing Poisson and Shanker distribution, with Shanker distribution as the mixing distribution. The result is a mixture distribution that has one parameter and can be used for modelling overdispersion count data. In this paper, we obtain that Poisson-Shanker distribution has several properties are unimodal, overdispersion, increasing hazard rate, and right skew. The first four raw moments and central moments have been obtained. Maximum likelihood is a method that is used to estimate the parameter, and the solution can be done using numerical iterations. A real data set is used to illustrate the proposed distribution. The characteristics of the Poisson-Shanker distribution parameter is also obtained by numerical simulation with several variations in parameter values and sample size. The result is average MSE and bias of the estimated parameter will increase when the parameter value rises for a value of n and will decrease when the value of n rises for a parameter value.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmorang, Venda Damianus
Abstrak :
Distribusi Poisson adalah distribusi yang sangat banyak dipakai dalam pemodelan data cacahan. Namun, distribusi Poisson memiliki keterbatasan yaitu kesamaan antara nilai mean dan variansi (equidispersi) dari data yang akan dimodelkan, sehingga distribusi Poisson tidak cocok digunakan untuk memodelkan data yang tidak memenuhi syarat tersebut. Kasus overdispersi (variansi lebih besar daripada nilai mean) dan underdispersi (variansi lebih kecil daripada nilai mean) sering kali ditemukan dalam kasus riil. Oleh karena itu, distribusi baru perlu dikembangkan dalam menangani data dengan kasus ini. Salah satu distribusi yang dapat menangani kasus ini adalah distribusi hyper-Poisson. Distribusi ini dapat diturunkan melalui hubungan rekursif dari keluarga distribusi Lagrangian Katz yang merupakan keluarga distribusi data cacahan. Distribusi ini juga dapat diklasifikasi berdasarkan parameternya, sehingga dapat digunakan untuk mengatasi kasus overdispersi dan underdispersi secara fleskibel. Pada skripsi ini dijelaskan mengenai pembentukan fungsi distribusi hyper-Poisson, karakterisitik dari distribusi hyper-Poisson, dan penggunaan distribusi hyper-Poisson dalam memodelkan data riil terkait kasus overdispersi dan underdispersi. ...... The Poisson distribution is a distribution that is very widely used in count data modeling. However, the Poisson distribution has a limitation, namely the equality between the mean and variance values (equidispersion) of the data to be modeled, so the Poisson distribution is no longer suitable for modeling data that does not meet this condition. Cases of overdispersion (variance greater than the mean value) and underdispersion (variance smaller than the mean value) are often found in real cases. Therefore, new distributions need to be developed to handle data with these cases. One distribution that can handle this case is the hyper-Poisson. This distribution can be derived through the recursive relation of the Lagrangian Katz family of distribution, which is a family of distribution of count data. This distribution can also be classified based on its parameter, so it can be used to handle overdispersion and underdispersion cases flexibly. This thesis studies how to generate the distribution function of the hyper-Poisson distribution, the characteristics of the hyper-Poisson distribution, and the use of the hyper-Poisson distribution in modeling real data related to overdispersion and underdispersion cases.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>