Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
cover
Abstrak :
In the process of spasial data making, there are several mistakes or errors that can be found in activies like digitizing, interpolation or others. These errors are closely related to data quality produced....
Artikel Jurnal  Universitas Indonesia Library
cover
Abstrak :
Reproductive health programs in Indonesia pass across sectoral boundaries and formal authorities that they turn out to be inter-sectorally and vertically complex. Accordingly, the provision of data for reproductive health program planning, monitoring, and evaluation is not easy. Among those topics covered in reproductive health definition, only family planning data generally available and in a comprehensive shape. The management information systems (MIS) of data on other reproductive health topic such as an reproductive tract infections (RTIs), sexually transmitted diseases (STDs) and maternal health need to be initiated or more activated.
Journal of Population, 7 (2) 2001 : 59-76, 2001
JOPO-7-2-2001-59
Artikel Jurnal  Universitas Indonesia Library
cover
Ira Sulistyowati
Abstrak :
Dalam rangka mendukung pengambilan keputusan yang tepat bagi pimpinan berbasis data (data driven organization), Kemenkeu menyusun inisiatif strategis optimalisasi Sistem Layanan Data Kementerian Keuangan (SLDK) dan pengembangan proyek data analytics. Dalam pengembangan data analytics, terdapat permasalahan rendahnya kualitas data sehingga data driven organization belum terwujud dengan optimal. Penelitian ini meggunakan metode kualitatif dengan melalui proses wawancara dan observasi. Pengukuran kualitas data dan tingkat kematangan kualitas data menggunakan kerangka kerja Loshin’s Data Quality, DAMA-Data Management Book of Knowledge (DMBoK), dan Government Data Qualiaty (GDQ). Hasil pengukuran kualitas data menunjukkan terdapat permasalahan data tidak akurat dan tidak lengkap dan tingkat kematangan kualitas data Kemenkeu berada pada level Repeatable. Menyusun strategi kualitas data, ketentuan teknis, tim kualitas data, dan prosedur pengelolaan kualitas data; identifikasi harapan dan aturan kualitas data; mengukur, memantau, dan melaporkan kualitas data; mengelola aturan, knowledge base, dan metadata; meningkatkan kesadaran; melakukan pelatihan; menyediakan tools, menerapkan aturan dan menangani permasalahan; memutakhirkan SLA; mengelola kinerja kualitas data; dan melakukan audit kualitas data merupakan strategi peningkatan kualitas data yang dilaksanakan dalam empat tahap pada Tahun 2022-2023. ......To support the right decision making for data-driven organizations, the Ministry of Finance (MoF) has developed a strategic initiative for optimizing the MoF's Data Service System (SLDK) and developing a data analytics project. In the development of data analysis, there is a problem of low data quality so that data-driven organizations have not been realized optimally. This study uses a qualitative method through interview and observation. Measurement of data quality and maturity level of data quality uses the Loshin's Data Quality framework, DAMA-Data Management Book of Knowledge (DMBoK), and Government Data Quality (GDQ). The results of the measurement of data quality indicate that there are problems with inaccurate and incomplete data and the MoF's data quality level is at the Repeatable level. Develop a data quality strategy, technical provisions, data quality team, and data quality management procedures; identification of data quality expectations and rules; measure, monitor, and report on data quality; manage rules, knowledge base, and metadata; raise awareness; conduct training; provide tools, apply rules and carry out problem solving; updating SLAs; manage data quality performance; and conducting data quality audits is a data quality improvement strategy implemented in four stages in 2022-2023.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Esti Ananingsih
Abstrak :
ABSTRAK Kementerian Pemuda dan Olahraga mempunyai tugas utama di bidang kepemudaan dan keolahragaan. Tugas utama tersebut ada yang dikerjakan dan dikelola oleh kementerian secara langsung dan ada yang diberikan kepada Dinas Pemuda dan Olahraga di seluruh provinsi contohnya pembinaan atlet Pusat Pendidikan dan Latihan Pelajar (PPLP). Kondisi data atlet PPLP saat ini tidak dapat digunakan untuk menentukan kebijakan dengan optimal karena tidak lengkap, tidak up to date, dan tidak akurat. Tujuan dari penelitian ini adalah menyusun strategi dalam bentuk rekomendasi peningkatan manajemen kualitas data atlet PPLP. Rekomendasi tersebut diharapkan dapat menjadi acuan agar data atlet PPLP dapat digunakan untuk menentukan kebijakan contohnya promosi dan degradasi atlet dan cabang olahraga. Penelitian ini menggunakan dua metode yaitu Data Quality Framework dari David Loshin dan Data Management Body of Knowledge (DMBOK) dari DAMA. Data Quality Framework dari David Loshin memiliki 8 komponen dimana setiap komponen mempunyai beberapa karakteristik yang digunakan untuk menilai tingkat dan harapan kematangan manajemen kualitas data. Data Management Body of Knowledge (DMBOK) dari DAMA memiliki 11 kegiatan yang digunakan untuk menyusun rekomendasi berdasarkan kesenjangan antara tingkat dan harapan kematangan manajemen kualitas data. Penelitian ini menghasilkan 29 rekomendasi yang telah divalidasi oleh narasumber. Tahun target pelaksanaan rekomendasi tersebut terbagi menjadi 4 semester yang dimulai pada Tahun 2020 Semester 1.
ABSTRACT The State Minister for Youth and Sports Affairs has the main task in the field of youth and sports. There are main task that carried out and managed by the State Minister directly and some are given to the Department for Youth and Sports affairs in all provinces, for example the coaching athletes Student Education and Training Center (PPLP). Currently the PPLP athletes data cannot be used to determine policies optimally, this is caused by incomplete, not up to date, and inaccurate data. The purpose of this research is to develop a strategy in the form of recommendations for improving the quality management of PPLP athletes data. The recommendation is expected to be a reference so it can be used to determine policies such as promotion and degradation of athletes and sports. This research uses two methods, the Quality of data Framework from David Loshin and Data Management Body of Knowledge (DMBOK) from DAMA. the Quality of data Framework from David Loshin has 8 components where each component has several characteristics that are used to assess the level and expectation of data quality management maturity. Data Management Body of Knowledge (DMBOK) from DAMA has 11 activities that are used to compile recommendations based on the gap between the level and expectation of data quality management maturity. This research produced 29 recommendations that were validated by the speakers. The target year for the implementation of the recommendations are divided into 4 semesters starting in 2020 Semester 1.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Aris Setiawan
Abstrak :
Data adalah aset yang berharga bagi organisasi karena data yang berkualitas dapat memberikan keuntungan dan nilai bagi perusahaan serta memberikan peluang adanya pengembangan bisnis baru apabila dikelola dengan baik. Sedangkan kualitas data yang buruk dapat memberikan dampak negatif antara lain keputusan bisnis yang tidak akurat, penurunan pendapatan, peningkatan biaya operasional, penurunan kepercayaan dan kepuasan pelanggan, peningkatan waktu pemrosesan data, dan tidak dapat memenuhi kepatuhan terhadap peraturan maupun ekspektasi bisnis. PT IDN adalah fintech yang memberikan kemajuan teknologi digital dalam sektor pendidikan di Indonesia dengan menawarkan pengelolaan dan pembayaran tagihan pendidikan secara online. Penelitian ini mencoba untuk menilai tingkat kematangan kualitas data di PT IDN dengan menggunakan delapan karakteristik kualitas data dalam Loshin’s Data Quality Framework. Hasil dari penilaian ini didapatkan bahwa PT IDN memiliki tingkat kematangan kualitas data sebesar 1 pada komponen prosedur, tata kelola, standar, teknologi, dan pengelolaan kinerja. Sedangkan tingkat kematangan kualitas data sebesar 2 ditemukan pada komponen harapan, dimensi, dan kebijakan informasi. Berdasarkan hasil dari penilaian maturitas manajemen kualitas data saat ini dan tingkat maturitas kualitas data yang diinginkan, maka didapatkan adalah 12 rekomendasi aktivitas-aktivitas yang dapat dilakukan oleh PT IDN untuk meningkatkan kualitas datanya berdasarkan DAMA-DMBOK. ......Data is an asset for organizations because quality data can provide benefits and value to the company and provide opportunities for new business development if managed properly. Meanwhile, poor data quality can have negative impacts including inaccurate business decisions, decreased revenue, increased operating costs, decreased customer trust and satisfaction, increased data processing time, and unable to meet regulatory compliance and business expectations. PT IDN is a fintech that provides advances in digital technology in the education sector in Indonesia by offering online management and payment of education bills. This study tries to assess the maturity level of data quality at PT IDN by using eight data quality characteristics in Loshin's Data Quality Framework. The results of this assessment show that PT IDN has a maturity level of data quality of 1 on the components of procedures, governance, standards, technology, and performance management. While the maturity level of data quality of 2 is found in the components of expectations, dimensions, and information policies. Based on the results of the current data quality management maturity assessment and the desired level of data quality maturity level, it is found that there are 12 recommended activities that PT IDN can do to improve its data quality based on DAMA-DMBOK.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Abstrak :
Thee preliminary results of :lie i998 Malawi Population and Housing Census (MPHC) indicate that the population of Malawi is 9.8 million. This _,figure is less than estimates prepared by most national and international institutions including renowned population specialists working an :lie population of Malawi. Nearly all-available population projections estimated :liar ill!! population of Malawi in i993 would be around I l million. The aforementioned discrepancy has .tome serious consequences. Firs! :lie Gross Domestic Product (GDP) per capita may be distorted in such a way as to suggest a general improvement in rite quality of life contrary to the situation. Second, the results of the census may be interpreted to indicate the success of me national population program especially rite :rational family planning program. As a result of these consequences there is need to evaluate me census results to verify whether the reported figure is indeed correct or to provide a plausible explanation for flue anomaly. Though not prescriptive, the paper offers plausible explanation for :lie observed differences. In particular, me paper argues that rite population figure obtained front the 1998 census, like most other censuses in developing countries, were underreported.
Journal of Population, 6 (1-2) 2000 : 125-145, 2000
JOPO-6-1
Artikel Jurnal  Universitas Indonesia Library
cover
Evelline Kristiani
Abstrak :
Bervariasinya kapasitas, potensi dan tingkat perkembangan daerah menyebabkan perbedaan mutu yang lebar antar program studi maupun institusi perguruan tinggi di penjuru Indonesia. Perbedaan mutu ini menjadi fokus para pemangku kepentingan perguruan tinggi, khususnya calon mahasiswa, pemerintah dan pasar tenaga kerja. Agar dapat menjaga mutunya, Universitas Kristen Krida Wacana (UKRIDA) sebagai salah satu dari institusi perguruan tinggi di Indonesia wajib memenuhi standar dari kriteria yang ditetapkan oleh Badan Akreditasi Nasional Perguruan Tinggi (BAN-PT). Kemudian, untuk dapat bersaing, UKRIDA juga perlu menetapkan keputusan-keputusan maupun rencana strategis yang dibuat memanfaatkan data yang sama dengan yang digunakan untuk pengukuran pemenuhan standar kriteria akreditasi agar selaras dengan tujuan utama peningkatan mutu. Namun, ternyata melalui analisis akar-akar masalah Loshin yang diantaranya manusia, proses, teknologi dan kebijakan ditemukan kualitas data dari salah satu kewajiban Tri Dharma yaitu pendidikan dan pengajaran secara khusus pada data mahasiswa dan akademik, masih buruk baik itu manajemen maupun kondisi dari data itu sendiri. Berdasarkan hal tersebut, penelitian ini bertujuan untuk menyusun strategi peningkatan kualitas data mahasiswa dan akademik UKRIDA. Menggunakan metode kualitatif, pengumpulan data dilakukan melalui wawancara, query langsung dan studi dokumen. Penilaian terhadap kualitas data saat ini menggunakan dimensi kualitas data dari Loshin dan PermenristekDikti RI Nomor 61 Tahun 2016 Pasal 12, penilaian terhadap tingkat kematangan manajemen kualitas data menggunakan Data Quality Maturity Model Loshin. Penilaian menghasilkan temuan penyebab permasalahan dan temuan kesenjangan manajemen. Analisis kemudian digunakan untuk menghasilkan rekomendasi strategi, yang pertama lewat pemetaan penyebab permasalahan umum DMBOK2 dibentuk strategi peningkatan kondisi kualitas data dan yang kedua, lewat pemetaan best practive aktivitas manajemen kualitas data DMBOK2 yang dipadu dengan poin-poin konsiderasi strategi kualitas data Loshin dibentuk strategi peningkatan manajemen kualitas data. Secara garis besar strategi yang diajukan menyarankan perbaikan struktur data dan antarmuka aplikasi, pendefinisian tata kelola data, penyelenggaraan dokumentasi aturan, SOP dan SLA yang lengkap hingga ke unit bisnis dan peningkatan pengukuran dan pelaporan. ...... Variations in capacity, potential, and level of regional development cause wide differences in quality between study programs and higher education institutions throughout Indonesia. These quality differences become the focus of higher education stakeholders, especially prospective students, the government, and the labor market. To maintain its quality, Krida Wacana Christian University (UKRIDA) as one of the higher education institutions in Indonesia must meet the standards of criterias set by the National Accreditation Body for Higher Education (BAN-PT). Then, to be able to compete, UKRIDA also needs to establish strategic decisions and plans that are made based on the same data used to measure accreditation criteria standards fulfillment so that they are aligned with the main objective of quality improvement. However, through analysis of Loshin’s domain of problem root causes include humans, processes, technology, and policies, turns out that the quality of data from one of the obligations of the Tri Dharma, namely education and teaching specifically on student and academic data is still poor both in terms of management and the condition of the data itself. Based on these founds, this study aims to develop strategies for improving the UKRIDA student and academic data quality. Using qualitative methods, data collection was carried out through interviews, direct queries and document study. Assessment of the current data quality uses data quality dimensions from Loshin and PermenristekDikti RI Number 61 of 2016 Article 12, assessment of the maturity level of data quality management using Loshin's Data Quality Maturity Model. The assessment results in: findings of problems causes and findings of management gaps. Further analysis was carried out to produce strategic recommendations, firstly through mapping DMBOK2 common problems causes; a strategy for improving data quality conditions was formed. Secondly, through mapping of DMBOK2 best practice data quality management activities combined with Loshin’s data quality strategy points of consideration, a data quality management improvement strategy was formed. Broadly speaking, the proposed strategy suggests corrections of data structures and application interfaces, defining data governance, organizing complete documentation of rules, SOPs, and SLAs up to business units also measurement and reporting improvement.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rita Margaretha
Abstrak :
Penelitian ini menggunakan metode Data Envelopment Analysis (DEA) untuk melakukan evaluasi kualitas pelayanan pada hypermarket di lokasi berbeda yang tersebar di wilayah DKI Jakarta dan sekitarnya. Secara umum, hasil efisiensi DMU yang diperoleh merupakan interaksi perbandingan input dan output. Organisasi yang diteliti disebut sebagai Decision Making Units (DMU); sedangkan input terdiri dari dimensi kualitas pelayanan pada bidang retail, yang terdiri dari aspek fisik, stok barang, interaksi pegawai, penyelesaian masalah, dan kebijakan toko. Output yang digunakan adalah penjualan kotor per tahun dan loyalitas pelanggan. Metode ini akan menghasilkan nilai efisiensi untuk tiap DMU, di mana dapat digunakan untuk mengidentifikasi penyesuaian yang perlu dilakukan pada DMU yang inefisien supaya mendekati efficient frontier. Dengan memfokuskan pada dimensi yang penting, maka organisasi akan menghasilkan kualitas pelayanan yang sesuai dengan keinginan pelanggan dan meningkatkan output organisasi pada saat yang bersamaan. ......Using Data Envelopment Analysis (DEA), this study attempts to evaluate and manage service quality of an Indonesian hypermarket at different store locations in Jakarta area. In general, DEA mathematically determines the efficiency score of Decision-Making Units (DMU) by comparing interaction of input and output. The organizational under analysis are designated as DMU; meanwhile the inputs are the dimensions use to define service quality in retail setting which consists of physical aspect, reliability, personal interaction, problem solving, and policy. The outputs included in this study are gross sales, and customer loyalty. Then, efficiency scores were generated for each store, which can be used to identify prospective adjustments to an inefficient DMU's that would help the DMU move toward the efficiency frontier. By focusing on the most important areas, the organization will provide a service that more adequately meets customers' needs and desires while at the same time maximizing the organization's goal.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S52083
UI - Skripsi Open  Universitas Indonesia Library
cover
Mutiara Aisyah
Abstrak :
Sebagai sebuah lembaga negara Lembaga Penjamin Simpanan (LPS) memiliki kebutuhan akan data dan informasi dengan kualitas yang baik untuk dijadikan sebagai dasar pengambilan keputusan dan pembuatan kebijakan. Kualitas data yang baik dapat diperoleh apabila pengelolaan data dilakukan dengan baik, termasuk melalui pengukuran kualitas data dan perancangan manajemen kualitas data sebagai bagian dari upaya strategi peningkatannya. Penelitian ini dilakukan untuk memberikan rekomendasi manajemen kualitas data untuk diterapkan di LPS sebagai upaya untuk meningkatkan kualitas data yang dikelola oleh LPS dengan menggunakan Data Quality Framework dari David Loshin dan Data Management Body of Knowledge (DMBOK) dari DAMA Institute. Sebelum dilakukan penyusunan rekomendasi manajemen kualitas data, komponen-komponen manajemen kualitas data dari Data Quality Framework yang terdiri dari harapan pengguna, dimensi kualitas data, kebijakan, prosedur, tata kelola, standar, teknologi, dan pengukuran kinerja digunakan sebagai dasar pengukuran tingkat maturitas kualitas data di LPS. Berdasarkan hasil analisis kesenjangan antara tingkat maturitas manajemen kualitas data LPS saat ini dengan tingkat maturitas manajemen kualitas data LPS yang diharapkan di masa yang akan datang telah disusun rekomendasi aktivitas manajemen kualitas data LPS yang perlu dilakukan. Dari 12 aktivitas Manajemen Kualitas Data dalam DAMA-DMBOK, terdapat 10 aktivitas yang direkomendasikan dalam inisiatif manajemen kualitas data LPS. As a government institution, the Indonesian Deposit Insurance Corporation (IDIC) has the need for good quality data and information to be used as a basis for decision making and policy making. Good data quality can be obtained if the data management is done well, including through measurement of data quality and preparation of data quality management as part of efforts to improve strategy. This research is conducted to provide recommendations for data quality management to be applied at IDIC as an effort to improve the quality of data by using Data Quality Framework from David Loshin and Data Management Body of Knowledge (DMBOK) from DAMA Institute. Prior to the preparation of data quality management recommendations, data quality management components of the Data Quality Framework consisting of user expectations, dimensions of data quality, policies, procedures, governance, standards, technology, and performance measurements are used as a basis for measuring data quality maturity levels on IDIC. Based on the results of the gap analysis between the current maturity level of IDIC’s data quality management and the expected level IDIC’s data quality management, recommendations for IDIC’s data quality management activities have been made. Of the 12 Data Quality Management activities in DAMA-DMBOK, there are 10 recommended activities to be carried out in the data quality management initiatives in IDIC.
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2   >>