Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Bayu Yudha Pratama
"ABSTRAK
Pada dunia ritel grosir, keragaman pembelian barang oleh pelanggan berkaitan erat terhadap laba. Pembelian satu barang yang sama dalam jumlah besar akan mendapatkan potongan harga yang lebih besar. Pemotongan harga ini mengurangi laba dari perusahaan ritel. Oleh karena itu, pelanggan selalu diharapkan untuk membeli banyak barang yang berbeda. PT Lotte Shopping Indonesia telah menetapkan target pencapaian untuk keragaman pembelian barang pada segmen pelanggan ritel dan horeka. Namun saat ini target tersebut masih belum dapat terpenuhi. Kesulitan yang dialami adalah menawarkan barang yang tepat kepada pelanggan. Inovasi yang dapat diterapkan adalah pengembangan sistem rekomendasi untuk menawarkan barang yang relevan. Penelitian ini menggunakan pendekatan collaborative filtering untuk membangun model sistem rekomendasi. Penelitian dilakukan terhadap data penjualan 2,5 tahun terakhir dengan jumlah transaksi mencapai 4,6 juta. Hasil dari penelitian menunjukkan bahwa metode memory-based k-Nearest Neighbors mengungguli metode model-based Singular Value Decomposition. Selain itu ditemukan bahwa segmentasi pelanggan tidak berhasil meningkatkan kinerja sistem.

ABSTRACT
The variety of goods purchased by customer closely related to retailer rsquo s profit. When an item purchased in large amount, it will get a larger discount which hurts retailer rsquo s profit. Big retailer chain always tries to entice customer to buy many different set of items. PT Lotte Shopping Indonesia has targets for variety of goods purchased in their retail and horeca segments. This target has not achieved regularly. Marketing team have trouble in offering right products. Recommendation system used in many e commerce retailers to offer relevant products. This study uses collaborative filtering approach to build recommendation system. The study conducted on sales data in the last 2.5 years with numbers transactions of 4.6 million. The result shows that memory based k Nearest Neighbors method outperformed the model based Singular Value Decomposition method. In addition, it was found that customer segmentation could not improve system performance."
2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Tsarina Dwi Putri
"ABSTRAK
Penggunaan word embedding sebagai pemodelan topik telah banyak dilakukan. Hasil dari pemodelan topik tersebut turut membantu dalam mengubah pola pikir para peneliti tentang teks sebagai suatu nilai. Menurut studi yang dilakukan oleh Mikolov et al. (2013) mengenai word embedding, mereka mengubah teks-teks tersebut menjadi suatu vektor yang dapat divisualisasikan dalam ruang vektor kontinu yang secara fleksibel dapat dihitung jarak kedekatannya dan dapat diolah lebih lanjut dengan menggabungkannya dengan metode yang lain seperti LSTM (Long Short Term Memory), CNN (Convolutional Neural Network), dll untuk berbagai keperluan penelitian. Beragam penelitian berkembang menggunakan hasil dari nilai embedding tersebut untuk tujuan yang lebih kompleks, mendorong penulis untuk kembali mengkaji manfaat dasar dari hal tersebut kemudian menggalinya untuk tujuan akhir lain yang belum pernah dilakukan penelitian lain sebelumnya.
Penelitian ini menggunakan nilai akhir embedding secara sederhana sebagai sistem rekomendasi berbasis konten yang kemudian berkembang dengan kebaruan untuk digunakan sebagai alat bantu untuk melakukan tinjauan sistematis. Hasil penelitian ini menunjukkan bahwa kebaikan penggunaan metode word embedding sangat bervariasi tergantung dari dataset dan hyperparameter yang digunakan.

ABSTRACT
The utilization of word embedding as topic modeling has been widely carried out. The results helped to change the researchers' mindset regarding text as a value. According to a study conducted by Mikolov et al. (2013) regarding word embedding, they convert these texts into vectors that can be visualized in a continuous vector space which can be flexibly calculated of its proximity and can be further processed by combining it with other methods such as LSTM (Long Short Term Memory), CNN (Convolutional Neural Network), etc. for various research purposes. Various studies have been developing by using the embedding value for more complex purposes, thus encouraging the author to re-examine the basic benefits of it then explore it for other purposes that have never been done by other studies before.
This study simply used embedding value as a content-based recommendation system which then it developed with novelty to be used as a tool to conduct systematic review. The results of this study indicate that the merits of using word embedding method vary greatly depending on the dataset and hyperparameters used."
Depok: Fakultas Teknik Universitas Indonesia , 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Subian Saidi
"Sistem rekomendasi merupakan model penyelesaian masalah yang menerapkan teknik-teknik tertentu untuk memberikan rekomendasi suatu infomaasi, produk dan jasa. Salah sam pendekatan yang digunakan dalam sistem rekomendasi yaitu melalui pendekatan collaborative filtering dengan menggunakan teknik/metode faktorisasi matriks (matrix factorization). Seberapa baik suatu metode diterapkan dalam sistem rekomendasi diukur dari kinerja atau akurasi model tersebut. Penelitian ini menguji kinelja metode Regularized Incremental Simultaneous Matrix Factorization (RISMF) dalarn sistem rekomendasi melalui studi eksprimen. Eksperimen dilakukan melalui simulasi komputasi untuk mendapatkan parameter model yang optimal. Hasihmya menunjukkan bahwa akurasi model pada saat parameter mencapai optimal sebesar 0.93. Hasil tersebut membuktikan bahwa metode RISMF cukup baik digunakan dalam sistem rekomendasi.

Recommendation System is a problem solving model by using methods to give recommendation some infomtations, products and services. Matrix Factorization for collaborative filtering is one of approach in recommendation system. How well a applied method in recommendation system measure from performance or accuration this model. This research examined performance of Regularized Incremental Simultaneous Matrix Factorization (RISMF) method on recommendation system by experimental study. Experiment was done for get optimum parameter model. The result shown that accuracy value on parameter optimum is 0.93. The result proof that RISMF method good enough used in recommendation system."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
T31938
UI - Tesis Open  Universitas Indonesia Library
cover
Adi Saepul Anwar
"Peningkatan persaingan dan kunjungan di situs web e-commerce shopping mall di Indonesia perlu disertai dengan meningkatkan strategi Customer Relationship Management CRM . Strategi yang bisa digunakan adalah peningkatan kualitas pelayanan, hal ini bisa di implementasikan melalui penyusunan sistem rekomendasi produk di situs web e-commerce tersebut. Untuk menyusun sistem tersebut, penggalian pola asosiasi produk dilakukan dengan memanfaatkan data web log yang berisi data navigasi dan pola kebiasaan pelanggan. Hal tersebut diakomodasi oleh metode web usage mining yaitu association rules. Algoritma yang digunakan adalah algoritma yang memberikan input asosiasi berdasarkan frekuensi item, yakni algoritma Apriori. Untuk menguji dan menyeleksi pola yang dihasilkan, objective interestingness measure dilakukan dan menghasilkan 25 luaran pola asosiasi.

An increasing of competition and visitors on e commerce shopping mall websites in Indonesia, need to be accompanied by improving Customer Relationship Management strategy. A strategy that can be used is improving the quality of services, it can be implemented through the preparation of product recommendation system on the e commerce website. To compile the system, pattern recognition of product association is conducted by utilizing weblog data which contains navigation data and customer behavior pattern. It is accommodated by web usage mining method that is association rules. The algorithm applied is an algorithm that provides input association based on item frequency, i.e Apriori algorithm. To test and select the resulting pattern, objective interestingness measure was performed and yields 25 outcomes of the association pattern."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67205
UI - Skripsi Membership  Universitas Indonesia Library
cover
Billy Surya Putra
"Sistem rekomendasi adalah sebuah teknik untuk menyediakan saran terkait suatu hal yang dapat dimanfaatkan oleh pengguna. Saran dapat berupa produk maupun jasa yang ditawarkan. Saran yang diberikan adalah produk atau jasa yang belum pernah digunakan atau dibeli oleh pengguna tersebut. Sistem rekomendasi, khususnya dengan menggunakan K-Nearest Neighbor KNN , mencapai kesuksesan pada beberapa akhir tahun ini.
Penelitian ini akan diimplementasikan K-Nearest Neighbor pada komputasi terdistribusi yaitu MapReduce untuk merancang sistem rekomendasi dengan menggunakan Item Based Collaborative Filtering IBCF dan User Based Collaborative Filtering UBCF pada dataset Movielens 100k. Penelitian akan menggunakan beberapa komputasi penghitung kesamaan yaitu Cosine Based Similarity, Pearson Correlation Similarity dan Euclidean Distance.
Hasil percobaan yang didapat adalah algoritma Euclidean Distance menghasilkan performa terbaik dalam waktu proses dan nilai keakuratan. Pada pendekatan IBCF, Euclidean Distance membutuhkan waktu proses dengan rata-rata 13 sekon dan nilai korelasi sebesar 0.84. Sedangkan pada UBCF, Euclidean Distance membutuhkan waktu proses dengan rata-rata 32 sekon dan nilai korelasi sebesar 0.84.

Recommender system is a technique to provide suggestions related to a thing that can be used for user. Suggestions can be products and services offered. The advice given is a product or service that has never been used or purchase by the user. The recommendation system, especially by using K Nearest Neighbor KNN , achieving success in several year.
This research will be implemented K Nearest Neighbor at distributed process that called MapReduce to arrange system by using Item Based Collaborative Filtering IBCF and User Based Collaborative Filtering UBCF on Movielens 100k dataset. The research will use several techniques to compute similarities such as Cosine Based Similarity, Pearson Correlation Similarity and Euclidean Distance.
The result of the experiment is Euclidean Distance algorithm give the best performance in process time and correlation. In the IBCF approach, Euclidean Distance takes process around 13 seconds and correlation value is 0.84. And at UBCF, Euclidean Distance takes processing time around 32 seconds and correlation value is 0.84.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68737
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Haekal Dwinanda
"Rendahnya tingkat kelentingan dalam proses produksi dari usaha mikro, kecil dan menengah yang disebabkan oleh sulitnnya mendapatkan kredit produktif, menjadikan proses alih daya sebagai salah satu solusi. Namun proses alih daya yang umum dilakukan oleh usaha mikro, kecil dan menengah dirasa panjang dan menyulitkan. Untuk menjawab hal tersebut maka dirancanglah sistem manajemen pengetahuan dengan sistem perekomendasi untuk proses alih daya pada usaha mikro, kecil dan menengah. Sistem ini merekomendasikan usaha mikro, kecil dan menengah sebagai mitra pengalihan daya berdasarkan profil usaha dan kriteria lain seperti lokasi dan kemampuan produksi. Sistem perekomendasi yang dirancang dalam penelitian ini menggunakan algoritma top-n. Sistem manajemen pengetahuan berupa aplikasi sistem perekomendasi berbasis web dihasilkan dari penelitian ini.

To address the low resilience of production process in small and medium enterprises caused by the difficulties in getting loans, outsourcing are proven as a working solution. Even so, the process of outsourcing in the small and medium enterprises are perceived as lengthy and difficult. To address aforementioned problem, a knowledge management system with recommender system for small and medium enterprises outsourcing are designed. This system recommend another small and medium enterprises that suitable to be an outsourcing partner based on enterprise’s profile and another criteria such as location and production capability. This recommender system make use of the top-n algorithm. The result of this research is a knowledge management system in form of recommender system web-based app.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59772
UI - Skripsi Membership  Universitas Indonesia Library