Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 8 dokumen yang sesuai dengan query
cover
Ahmad Saladin Harun
Abstrak :
Sistem pipa bawah laut merupakan sarana transportasi yang sangat penting terutama untuk menyalurkan minyak dan gas bumi dari sumbernya ke tempat pengolahan. Akibat dari kondisi topografi dasar laut yang tidak teratur, suatu offshore pipeline bisa saja terbentang bebas atau mengalami free span. Salah satu aspek penting dalam perancangan offshore pipeline adalah analisa rentangan bebas (free span analysis). Pada pengerjaan skripsi kali ini perhitungan free span dinamik pada pipa bawah laut yang dilakukan dengan menggunakan perhitungan berdasarkan Boyun Guo dan panjang span statik berdasarkan ASME B31.8 untuk pipa gas 14 inchi pada Oyong Project milik Santos Pty Ltd dan juga menggunakan program CFD yaitu program EFD Lab. Program tersebut akan digunakan untuk mensimulasikan kondisi aliran disekitar pipa bawah laut tersebut dan fenomena vortex shedding yang terjadi dan nantinya hasil dari program tersebut akan digunakan untuk dijadikan perbandingan perhitungan dari literatur yang telah dilakukan. ......Subsea pipeline system is a means of transportation which is very important especially for delivering oil and gas from the source to the processing. As a result of the condition of the seabed topography is not smooth, an offshore pipeline could go free or have free span. One important aspect in the design of offshore pipeline analysis is free span analysis. At the time this final project is processing calculations on the dynamic free span pipeline under the sea by using a calculation based on offshore pipeline Boyun Guo and static based on the length of span ASME B31.8 for 14 inches gas pipeline on the property of Santos Oyong Project Pty Ltd and also using the CFD program (EFD Lab). The program will be used to simulate flow conditions around the pipe under the sea and the vortex shedding phenomenon which occurs later and the results of the program will be used for the calculation of comparative literature that has been done.
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51007
UI - Skripsi Open  Universitas Indonesia Library
cover
Bahrain Munir
Abstrak :
Penelitian ini bertujuan untuk menganalisis risiko pipa bawah laut milik PT. AZ yang terdampak proyek reklamasi kilang PT. XY berlokasi di perairan Jawa Barat. Menggunakan penilaian risiko proteksi pipa bawah laut DNVGL-RP-F107, penelitian memperhatikan Skenario Bahaya Besar yang teridentifikasi, yaitu: kejatuhan jangkar (dropped anchor) dan pengerukan tanah (soil excavation). Objek penelitian difokuskan pada pipa bawah laut berdiameter 12” dari GG A ke OPF (Onshore Processing Facilities) dalam kondisi terkubur dengan tingkat kedalaman 2 meter dari KP 24,6 ke KP 34,713 dekat area Reklamasi kilang seluas 280 Ha. Penelitian menggunakan data sekunder yang melingkupi karakteristik dan properti pipa bawah laut, karakteristik kapal serta jangkar yang melintas, dan aktivitas pengerukan tanah. Pendekatan yang digunakan adalah kuantitatif deskriptif analitik yang mengutamakan indepth-analysis. Hasil penelitian menunjukkan konsekuensi dropped anchor mendapat level kerusakan pipa D1, yang artinya tidak diperlukan tambahan safeguard untuk menurunkan residual risk. Untuk penilaian risiko soil excavation nilai initial risk yang dihasilkan adalah 9 (medium) dengan tingkat kerusakan D3 sehingga direkomendasikan safeguard tambahan untuk menurunkan residual risk menjadi Tolerable (ALARP). Beberapa saran ditambahkan untuk menjamin keselamatan operasi pasca proyek. ......This study aims to analyze the risk on subsea pipeline of PT. AZ affected by the PT. XY refinery reclamation project located on West Java Coastal. Using the DNVGL-RP-F107 subsea pipeline protection risk assessment, the study pays attention to the identified Major Accident Event, i.e., dropped anchor and soil excavation. The object of this research is focused on the 12” diameter subsea pipeline from GG A to OPF (Onshore Processing Facilities) with 2 meters burial depth from KP 24.6 to KP 34,713 near the 280 Ha refinery vii Universitas Indonesia reclamation area. This study uses secondary data covering the characteristics and properties of the subsea pipeline, the passage ships/tugboat and deployed anchors, and the soil excavation activity. The approach used is quantitative descriptive analytic which prioritizes in-depth analysis. The results shows that the consequence of dropped anchor is with pipe damage level of D1 which means that no additional safeguard is needed to further reduce the residual risk. On soil excavation risk assessment, the initial risk value generated is 9 (medium) with pipe damage level of D3, therefore some additional safeguards recommended so that the residual risk becoming Tolerable (ALARP). Some additional advises are provided to ensure post-project operational safety.
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yanri Noer Thaher
Abstrak :
Minyak mentah yang memiliki kandungan wax tinggi dapat menyebabkan timbulnya permasalahan selama proses transportasi berlangsung. Jika titik awal pembentukan deposisi dapat diprediksi dengan baik dan laju pengendapan dapat dihitung secara akurat maka strategi penanganannya akan tepat sasaran. Dalam penelitian ini, pembentukan deposisi wax diprediksi dengan menggunakan simulasi OLGA. Uji laboratorium atas sampel dari sumur Bravo dilakukan terlebih dahulu untuk mengetahui komposisi fluida, nilai WAT, jumlah fraksi wax dan viskositas. Karakterisasi dan tuning dilakukan dengan bantuan perangkat lunak PVTsim menggunakan hasil pengujian laboratorium. Hasil karakterisasi ini selanjutnya digunakan sebagai input bagi OLGA untuk memprediksi titik awal deposisi serta menghitung laju pengendapannya. Simulasi dilakukan pada laju alir 80000 bpd pada beberapa periode waktu. Kemudian dilakukan juga beberapa variasi laju alir untuk melihat pengaruhnya terhadap titik awal deposisi wax serta tingkat ketebalannya. Untuk kasus lapangan Charlie-Bravo dengan laju alir 80000 bpd, titik awal deposisi wax terbentuk pada jarak 4 km pada temperatur 31,1 oC. Laju pengendapan akan terus meningkat seiring berjalannya waktu dan akan mencapai ketebalan 1 mm pada jarak 6,87 km setelah 82 hari. Rekomendasi untuk melakukan pigging dikeluarkan apabila ketebalan wax pada dinding pipa mencapai 1 mm agar peningkatan laju pengendapan dapat dikurangi. ...... The presence of wax in crude oil can lead to the formation of wax deposit on the wall of pipelines. If we can predict the starting point for the formation of wax deposition and calculate the rate accurately then the appropriate mitigation can be well developed. In this study, the wax deposition was predicted using OLGA simulation. Laboratory test from Bravo wells to determine the fluid composition, WAT, amount of wax fraction and viscosity shall be done first. This laboratory test result was then characterized and tuned using the PVTsim. The result was used as an input for OLGA to calculate the rate of wax deposition in pipelines. Simulation was conducted at a flow rate of 80000 bpd with the time of 1-60 days. The same thing was also done at several flow rates to see the effect of wax formation and its level of thickness. In the case of Charlie-Bravo field that produce 80000 bpd of liquid, wax began to precipitate at a distance of 4 km and temperature 31.1 oC. The deposition rate will continue to increase over the time and will get a thickness of 1 mm at the distance of 6.87 km after flowing for about 82 days Pigging is recommended if the wax thickness in the pipe achieves 1 mm. This is as a preventive maintenance to reduce an escalation of rate deposition.
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41784
UI - Tesis Membership  Universitas Indonesia Library
cover
I Made Adi Wardana
Abstrak :
[ABSTRAK
Pengembangan lapangan gas laut dalam memiliki tantangan teknis, terkait fasilitas produksi dan teknologi untuk dapat memproduksikan migas pada kondisi lingkungan yang ekstrem. Disamping itu, biaya yang diperlukan lebih besar dibandingkan pengembangan lapangan laut dangkal. Dalam penelitian ini dilakukan analisa secara teknis dan ekonomis terhadap pengembangan lapangan gas laut dalam di Selat Makasar dengan metode subsea tieback, dengan memanfaatkan kapasitas tersedia dari floating production unit (FPU) yang sudah ada. Analisa teknis meliputi penentuan ukuran pipa (flowline) optimal, yang dapat memenuhi target deliverabilitas gas, memenuhi kriteria teknis lainnya, serta analisa flow assurance, khususnya mitigasi hidrat untuk menjamin keberlangsungan aliran fluida dari sumur bawah laut hingga ke titik jual. Dari analisa teknis akan didapatkan beberapa konfigurasi ukuran pipa dan mitigasi hidrat. Analisa ekonomi meliputi perhitungan biaya investasi untuk setiap opsi yang memenuhi kriteria teknis, kemudian dilanjutkan penghitungan parameter keekonomian berdasarkan aturan Production Sharing Contract (PSC) yang berlaku di Indonesia. Dengan harga gas 6 US$/mmbtu, didapatkan nilai Government Take (GT) 609 juta US$ dan Internal rate of Return (IRR) 15.13%. Sensitivitas analisis dilakukan dengan variasi harga jual gas dan mengubah besaran kontraktor split untuk meningkatkan IRR sehingga dapat mencapai nilai yang masih dapat diterima dari sisi Kontraktor. Untuk mendapatkan IRR yang lebih besar dari 20%, diperlukan kontraktor split sebesar 48%. Hasil analisa keekonomian dapat menjadi pertimbangan dalam penentuan besaran kontraktor split untuk pengembangan lapangan gas laut dalam.
ABSTRACT
Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development.;Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development., Deepwater gas field development has technical challenges, related to production facilities and technology that can be used for producing oil and gas in the extreme ambient conditions. The required cost is also higher than shallow water. This research analyzed technical and economical aspect of deepwater gas field development at Makasar Strait using subsea tieback method, which utilize the available capacity from existing Floating Production Unit (FPU). Technical analysis include selection the optimum flowline size, which meet the gas deliverability and other criteria as well. It also cover the flow assurance analysis, particularly hydrate mitigation, to ensure the flow continuity of oil and gas from subsea well to the sales point. Economic analysis include the calculation of investment cost on each option that meet the technical criteria above. Then continued with calculation of economic parameter based on applicable Indonesia Production Sharing Contract (PSC) scheme. With gas price of 6 US$/mmbtu, will give Government Take (GT) of 609 million US$ and Internal rate of Return (IRR) 15.13%. Sensitivity analysis has been done by varrying the gas sale price and changing the percentage of contractor split to increase the IRR to meet the value that still acceptable from Contractor side. Contractor split of 48% is required to achieve IRR higher than 20%. This economic analysis result could become a consideration in defining the percentage of Contractor Split for deepwater gas development.]
2015
T44510
UI - Tesis Membership  Universitas Indonesia Library
cover
Arinka Aninditya
Abstrak :
ABSTRAK
Data survei, laporan, serta deliverables dan informasi yang diperoleh oleh perusahaan subsea survey services dapat disusun menjadi sebuah basis data proyek. Informasi terkait proyek ini merujuk ke berbagai data yang dapat digunakan oleh tim proyek serta manajer proyek untuk mengumpulkan data dan informasi terkait proyek untuk memberikan wawasan dan latar belakang memadai bagi tim untuk melakukan pengambilan keputusan terutama pada fase perencanaan proyek. Salah satu cara untuk mengembangkan basis data ini agar dapat disajikan lebih efektif dan efisien yaitu dengan mengimplementasikan Knowledge Management (KM) dan Sistem Informasi Geografis (GIS). Strategi implementasi KM dan GIS ini akan dicari dengan menentukan indikator-indikator yang dapat menjadi strategi penerapan KM dan GIS pada manajemen basis data proyek. Sebuah sistem informasi data proyek berbasis spasial akan dikembangkan dan dilihat dampaknya terhadap kinerja pengambilan keputusan di perusahaan. Pengguna dari berbagai level di perusahaan juga dapat menggunakan sistem informasi dengan mudah dan cepat. Pada penelitian ini, indikator-indikator strategi implementasi KM dan GIS dicari dengan melakukan survei dan diolah dengan menggunakan analisis PLS-SEM serta analisis kepentingan-performa. Uji coba sistem informasi sederhana juga dilakukan untuk melihat pengaruhnya terhadap kinerja pengambilan keputusan di perusahaan. Dari analisis data, didapatkan bahwa manajemen basis data non-spasial berpengaruh terhadap tiga proses KM pertama yaitu knowledge creation, knowledge storage, dan knowledge transfer. Sedangkan proses knowledge application dipengaruhi manajemen basis data non-spasial dengan bantuan tools GIS. Sistem informasi yang dibuat juga membantu dari segi efektivitas kontrol waktu dalam melakukan kinerja pengambilan keputusan di perusahaan subsea survey services.
ABSTRACT
Survey data, reports, and deliverables and information acquired by subsea survey services company can be compiled into a project database. Information related to the projects refer to various data which can be used by the project team and project managers to collect data and information related to the project to provide sufficient comprehension and background for the team to make decisions, especially in project planning phase. One way to develop this database so that it can be presented more effectively and efficiently is by implementing Knowledge Management (KM) and Geographic Information Systems (GIS). KM and GIS implementation strategy will be pursued by determining indicators that can be used as KM and GIS implementation strategy in project database management. A spatial-based project data information system will be developed and seen its impact on the performance of decision making in the company. Users of various levels in the company can also use information systems easily and quickly. In this study, indicators of KM and GIS obtained by conducting surveys and processed using PLS-SEM analysis and importance-performance analysis (IPA). A simple information system prototype was also created to see its effect on the decision-making performance in the company. From the data analysis, it was found that the non-spatial database management influenced the first three KM processes: knowledge creation, knowledge storage, and knowledge transfer. While the knowledge application process is influenced by non-spatial database management with GIS. The information system created also helps in terms of the effectiveness of time control in achieving decision-making performance in the subsea survey services company.
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Irwan Mangatur Victor
Abstrak :
Dalam operasi industri migas lepas pantai instalasi pipa bawah laut digunakan sebagai moda transportasi untuk memindahkan produk migas dari satu tempat ke tempat lainnya, operasi pipa bawah laut tersebut tidak lepas dari bahaya dan resiko yang bisa disebabkan oleh berbagai faktor. Mayoritas kegagalan pipa bawah laut terjadi disebabkan karena kegagalan dalam mengenali bahaya dan tidak adanya mitigasi bahaya yang tepat. Kegagalan tersebut dapat dicegah melalui suatu metode manajemen risiko keselamatan dan salah satu tahapan dari manajemen risiko tersebut adalah penilaian risiko. Pipa memiliki kerentanan dalam mengalami kerusakan yang dapat mengakibatkan berbagai insiden keselamatan yang berdampak pada keselamatan manusia, pencemaran lingkungan, serta bisnis perusahaan. Penelitian ini bertujuan untuk melakukan penilaian risiko pipa bawah laut 20 inchi yang berlokasi di perairan Kalimantan Timur milik PT.X pada fase operasi. Penelitian ini merupakan penelitian kuantitatif dengan menggunakan data sekunder yang didapatkan dari dokumen PT. X. Metodologi penilaian risiko pipeline (DNV-RP-F107) digunakan untuk mengidentifikasi risiko. Dari hasil analisis yang dilakukan dalam penelitian ini, didapatkan bahwa penilaian Risiko pada Pipa utama 20” penyalur MIGAS PT X telah dilakukan pada skenario kejatuhan dan terseret jangkar, kebocoran pipa, dan kapal tenggelam dengan hasil penelitian menunjukan risiko yang masih bisa diterima (acceptable/minor risk). Mitigasi yang telah dilakukan oleh PT X dalam mengoperasikan pipa 20” untuk terus dipertahankan agar risiko pada ketiga skenario yang diteliti dapat terus terkontrol dan berada pada tingkat risiko yangrendah/dapat diterima. ......In offshore oil and gas industry operations, underwater pipeline installations are used as transportation to move oil and gas products from one place to another, the underwater pipeline operation cannot be separated from the dangers and risks that can be caused by various factors. Most subsea pipeline failures occur due to failure to recognize hazards and the absence of proper hazard mitigation. These failures can be prevented through a safety risk management method and one of the stages of risk management is risk assessment. Pipes have a vulnerability to damage that can result in various safety incidents that have an impact on human safety, environmental pollution, as well as the company's business. This study aims to conduct a risk assessment of the 20-inch submarine pipeline located in the waters of East Kalimantan belonging to PT.X in the operation phase. This research is a quantitative research using secondary data obtained from PT. X. A pipeline risk assessment methodology (DNV-RP-F107) will be used to identify risks. From the results of the analysis carried out in this study, it was found that the Risk assessment of the 20” main pipeline for oil and gas distributor PT X had been carried out in the scenarios of falling and being dragged by anchors, pipe leaks, and sinking ships with the results of the study showing acceptable risks. The mitigation that has been carried out by PT X in operating the 20” pipe is to be maintained so that the risks in the three scenarios studied can be controlled and are at a low/acceptable level of risk.
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mochamad Albareno
Abstrak :
Potensi bahaya yang terjadi selama fase FEED (Front End Engineering Design) mengakibatkan kegagalan proyek pipa bawah laut yang diderita dari berbagai aspek baik dari kerugian dana, lingkungan dan bencana alam. Perlu ditentukan metode yang tepat dalam menentukan tingkat risiko dan mitigasi pada integritas pipa sehingga meningkatkan keamanan dan mengurangi potensi risiko. Penerapan analisa risiko metode Risk FMEA yang memperhatikan faktor deteksi dan analisa biaya dengan Monte Carlo, dapat meningkatkan ketepatan mengambil kebijakan risiko, optimalisasi dalam penerapan strategi inspeksi, monitor dan evaluasi risiko. Hasil analisa risiko didapatkan 13 tindakan rekomendasi penanggulangan potensi bahaya yang berasal dari 56 potensi risiko yang ada. Nilai perbandingan antara biaya pemeliharaan dan penanggulangan risiko dibandingkan dengan dampak risiko adalah 0,0986. Analisa yang dilakukan menyatakan bahwa penerapan rekomendasi risiko tersebut dapat menghilangkan potensi bahaya pada proyek pipa bawah laut.
Potential hazards that occured during phase FEED (Front End Engineering Design) were resulted in the failure of subsea pipeline project and reviewed from various aspects both from financial lost, environmental and natural disasters. The exact method had to be determined the level of risks and mitigate the integrity of pipeline in order to increase security and reduce potential risks. The approach of the Risk FMEA method which consider the value of detection and analyze pusing Monte Carlo method can improve the accuracy of risk policies, implementation of the strategies, inspection, monitoring and evaluation of risks. This risk analysis results obtained 13 actions of hazard mitigation which were initally 56 potential risks. The value comparison between the cost of maintenance and control of risk were compared and its value was 0.0986. The implementation of risk analysis? result can be conducted in order to eliminate the potential hazards of subsea pipeline projec.
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45541
UI - Tesis Membership  Universitas Indonesia Library
cover
Abstrak :
This encyclopedia adopts a wider definition for the concept of ocean engineering. Specifically, it includes (1) offshore engineering: fixed and floating offshore oil and gas platforms; pipelines and risers; cables and moorings; buoy technology; foundation engineering; ocean mining; marine and offshore renewable energy; aquaculture engineering; and subsea engineering; (2) naval architecture: ship and special marine vehicle design; intact and damaged stability; technology for energy efficiency and green shipping; ship production technology; decommissioning and recycling; (3) polar and Arctic Engineering: ice mechanics; ice-structure interaction; polar operations; polar design; environmental protection; (4) underwater technologies: AUV/ROV design; AUV/ROV hydrodynamics; maneuvering and control; and underwater-specific communicating and sensing systems for AUV/ROVs. It summarizes the A–Z of the background and application knowledge of ocean engineering for use by ocean scientists and ocean engineers as well as nonspecialists such as engineers and scientists from all disciplines, economists, students, and politicians. Ocean engineering theories, ocean devices and equipment, ocean design and operation technologies are described by international experts, many from industry and each entry offers an introduction and references for further study, making current technology and operating practices available for future generations to learn from. The book also furthers our understanding of the current state of the art, leading to new and more efficient technologies with breakthroughs from new theory and materials. As the land resources approach the exploitation limit, ocean resources are becoming the next choice for the sustainable development. As such, ocean engineering is vital in the 21st century.
Singapore: Springer Singapore, 2019
e20510220
eBooks  Universitas Indonesia Library