Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 73 dokumen yang sesuai dengan query
cover
Gabriella Kurniawan
"ABSTRACT
Hepatitis merupakan penyakit peradangan pada hati yang dapat disebabkan oleh virus hepatitis. Di antara lima jenis hepatitis, hepatitis B dan hepatitis C merupakan jenis hepatitis yang dapat berkembang menjadi kanker hati. Kanker hati merupakan jenis kanker nomor tujuh tertinggi di dunia dan nomor tiga yang menyebabkan kematian karena kanker. Seseorang yang memiliki gejala penyakit hepatitis dapat melakukan serangkaian uji laboratorium untuk melihat kondisi kesehatannya. Hasil laboratorium hepatitis dapat kita manfaatkan untuk membentuk suatu program yang dapat mengklasifikasi hepatitis B dan hepatitis C. K-Means Clustering merupakan salah satu metode clustering yang dapat dimanfaatkan untuk mengklasifikasi hepatitis B dan hepatitis C. K-Means Clustering cukup mudah untuk diimplementasikan dan waktu yang digunakan untuk mengolah data juga cukup sedikit sehingga, metode ini cukup baik untuk mengklasifikasi data hepatitis B dan hepatitis C. Sementara, Spherical K-Means merupakan metode lanjutan dari K-Means Clustering. Hasil klasifikasi dari dua buah metode akan digunakan untuk melihat akurasi dari kedua buah metode dan membandingkan kedua metode tersebut.

ABSTRACT
Hepatitis is an inflammatory disease of the liver caused by hepatitis virus. Among the five types of hepatitis virus, hepatitis B and hepatitis C is the types of hepatitis that can develop into liver cancer. Liver cancer is number seventh in the world for the highest cancer case and number third of the highest death because of cancer. Someone who has symptoms of hepatitis can carry out a series of laboratory tests to see his health condition. This laboratory results can be used to form a program to classify hepatitis B and hepatitis C data. K-Means Clustering is a clustering method which can be used to classify hepatitis B and hepatitis C data. K-Means Clustering was rather easy to use and less time was needed to running the program of K-Means Clustering, with the result that, K-Means Clustering method was good enough to classify hepatitis B and hepatitis C data. While, Spherical K-Means is an advanced method of K-Means Clustering. Classification results from this two methods will be used to see the accuracy of the data and compare the two methods."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Febrisa Dhewi Ramadhany
"ABSTRACT
Thalassemia merupakan salah satu penyakit kelainan sel darah merah yang diturunkan oleh orang tua sejak lahir. Thalassemia mengakibatkan protein yang ada di dalam sel darah merah rusak dan tidak mampu berfungsi dengan baik. Hingga saat ini penyakit thalassemia belum dapat disembuhkan, namun penyakit thalassemia dapat dicegah dengan melakukan deteksi dini atau tes prenatal yang dikenal dengan skrining. Pada penelitian ini deteksi dini dilakukan dengan bantuan komputer. Ada beberapa teknik yang telah digunakan untuk mengklasifikasi skrining data thalassemia, salah satu metode yang mampu mengklasifikasi penyakit thalassemia diantaranya adalah Support Vector Machines (SVM) dan Multi-Layer Perceptron (MLP). Data thalassemia yang digunakan diperoleh dari RSAB Harapan Kita, Indonesia. Data tersebut memiliki yang memiiki 10 fitur. Setelah pengujian dilakukan, klasifikasi dengan menggunakan metode SVM menunjukkan hasil akurasi lebih baik sebesar 97,47190988%  dengan rata-rata running time 0,145899875 detik. Sedangkan MLP memperoleh hasil akurasi terbaik sebesar 63,91% dengan rata-rata running time 0,009033 detik. Kesimpulan yang diperoleh menunjukkan bahwa teknik klasifikasi menggunakan SVM memiliki akurasi yang  lebih baik apabila dibandingkan dengan MLP. 

ABSTRACT
Thalassaemia is a red blood cell disorder that is inherited by parents from birth. Thalassaemia results in damaged proteins in red blood cells and are unable to function properly. Until now, thalassaemia has not been cured, but thalassaemia can be prevented by early detection or prenatal testing known as screening. In this study, early detection is done with the help of a computer. There are several techniques that have been used to classify thalassaemia data screening, one method that is able to classify thalassaemia include Support Vector Machines (SVM) and Multi-Layer Perceptron (MLP). The thalassaemia data used was obtained from Harapan Kita Hospital, Indonesia. The data has 10 features. After the testing is done, the classification using the SVM method shows better accuracy results of 97.447190988% with an average running time of 0.145899875 seconds. While MLP obtained the best accuracy results of 63.91% with an average running time of 0.009033 seconds. The conclusions obtained showed that the classification technique using SVM had better accuracy compared to MLP."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Putri Maysaroh
"Tugas akhir ini akan membahas model waktu tunggu kendaraan pada persimpangan dengan lampu lalu lintas saat jam sibuk. Model waktu tunggu kendaraan pada jam sibuk ini dibuat dengan cara memodifikasi kurva dari jumlah kendaraan dalam antrian pada kondisi steady-state dengan kurva jumlah kendaraan dalam antrian pada kondisi deterministik dengan menggunakan metode P. D. Whiting. Hasil modifikasi ini merupakan kurva dari jumlah kendaraan dalam antrian untuk kondisi time-dependent.

Vehicle delay model at signalized intersection during peak hour is discussed in this skripsi. This model can be used to approximate how long a vehicle has to queue up at the intersection during peak hour. P. D. Whiting method is used to obtain vehicle queue length of time-dependent curve base on modify vehicles queue length of steady-state curve and vehicles queue length of deterministic curve."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S42695
UI - Skripsi Open  Universitas Indonesia Library
cover
Rika
"ABSTRAK
Pada beberapa tahun terakhir, sistem pengenalan wajah telah marak digunakan dalam berbagai aspek sebagai wujud dari kemajuan teknologi. Berbagai penelitian dilakukan untuk terus memperbaiki akurasi dari pengenalan wajah. Pada penelitian ini digunakan metode klasifikasi Learning Vector Quantization dan Fuzzy Kernel Learning Vector Quantization. Data yang digunakan adalah Labeled Face in The Wild-a LFW-a. Database ini tidak memiliki batasan seperti latar belakang, ekspresi, posisi, dan sebagainya. Berdasarkan hasil uji coba menggunakan database LFW-a, sistem pengenalan wajah dengan metode LVQ memiliki akurasi tertinggi 89,33 dan metode FKLVQ memiliki akurasi tertinggi 89,33 pula.

ABSTRACT
In recent years, face recognition is widely used in various aspects as a form of technology advancement. Various studies are conducted to keep improving the accuracy of face recognition. In this research, Learning Vector Quantization and Fuzzy Kernel Learning Vector Quantization are used as a method of classification. The data used in this research is Labeled Face in The Wild a LFW a. This database has no restrictions such as background, expression, position, and so on. Based on test results using LFW a database, face recognition using LVQ method has highest accuracy at 89,33 and FKLVQ method has highest accuracy at 89,33 as well."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"Skizofrenia adalah gangguan jiwa yang serius dan kronis. Penyakit ini ditandai dengan gangguan dalam pemikiran, persepsi, dan tingkah laku. Karena gangguan-gangguan ini dapat memicu penderita Skizofrenia untuk bunuh diri atau mencoba bunuh diri, penderita Skizofrenia mempunyai usia harapan hidup yang lebih rendah dari populasi umum. Skizofrenia juga sulit untuk didiagnosis karena belum ada tes secara fisik untuk mendiagnosisnya dan gejala-gejalanya sangat mirip dengan beberapa gangguan jiwa lainnya. Dengan menggunakan Northwestern University Schizophrenia Data, penelitian ini bertujuan untuk mengklasifikasikan orang yang menderita Skizofrenia dan orang yang tidak menderita Skizofrenia. Data tersebut terdiri dari 392 observasi dan 65 variabel yang merupakan data demografis dan data kuesioner Scale for the Assessment of Positive Symptoms dan Scale for the Assessment of Negative Symptoms yang diisi oleh klinisi. Metode klasifikasi yang digunakan adalah machine learning dengan metode Support Vector Machines SVM dan Twin Support Vector Machines Twin SVM menggunakan MATLAB R2017a. Simulasi dilakukan dengan data dan persentase data training dan testing yang berbeda-beda. Pada setiap simulai, akurasi serta running time diukur. Validasi dan evaluasi performa dari model yang telah dioptimasi dilakukan dengan mengambil rata-rata dari sepuluh kali Hold-Out Validation yang dilakukan. Pada umumnya, metode Twin SVM berhasil mengklasifikasikan data Skizofrenia dengan lebih akurat dibandingkan dengan metode SVM. Metode Twin SVM dengan kernel Gaussian menghasilkan hasil akhir akurasi klasifikasi data Skizofrenia yang terbaik, yaitu 91,0 . Berdasarkan hasil akhir running time, metode SVM dengan kernel Gaussian untuk klasifikasi data Skizofrenia mempunyai running time yang paling cepat, 0,664 detik. Selain itu, metode SVM dengan kernel linear, metode SVM dengan kernel Gaussian, dan metode Twin SVM untuk klasifikasi data Skizofrenia berhasil mencapai akurasi hingga 95,0 dalam setidaknya satu simulasi.

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data as well as clinician filled Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms questionnaires. Classification methods that are used are machine learning with Support Vector Machines SVM and Twin Support Vector Machine Twin SVM using MATLAB R2017a. Simulations are done with different data and percentage of training and testing data. In each simulation, accuracy and running time are measured. Performance validation and evaluation of the optimized models are done by taking the average of ten times Hold Out Validations that were done. In general, Twin SVM successfully classified Schizophrenia data more accurately than the SVM method. Twin SVM with Gaussian kernel produced the best final accuracy in classifying Schizophrenia data, 91.0 . Based on the final running time, SVM with Gaussian kernel has the fastest running time in classifying Schizophrenia data, 0.664 seconds. Furthermore, SVM with linear kernel, SVM with Gaussian kernel, and Twin SVM managed to reach an accuracy of 95.0 in at least one simulation in classifying Schizophrenia data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andya Ruvita
"Pengenalan wajah merupakan teknologi yang berkembang sangat pesat. Pengenalan wajah mampu menghasilkan beragam informasi mengenai identitas seseorang dengan cepat dan akurat. Salah satunya, mampu memberikan informasi mengenai jenis kelamin dari setiap orang yaitu sebagai pria atau wanita. Proses klasifikasi pria atau wanita ini menjadi hal yang sangat penting dalam berbagai bidang, seperti bisnis berbasis online, kontrol akses, absensi kehadiran, sistem keamanan, identifikasi individu yang tidak dikenal, dan lain-lain. Dalam penelitian ini digunakan Fisher Score sebagai metode pemilihan fitur, dan Support Vector Machine SVM sebagai metode klasifikasi untuk mengukur tingkat akurasi dan running time dari klasifikasi pria atau wanita dengan data yang digunakan berasal dari Computer Science Research Projects. Hasil akurasi dari klasifikasi SVM kernel polynomial d = 4 dengan pemilihan fitur Fisher Score mencapai tingkat akurasi tertinggi yaitu 100 pada 3000 fitur dengan data training 90 . Sedangkan hasil akurasi terbaik dari klasifikasi SVM tanpa pemilihan fitur mencapai 77.5 pada data training 80.

Face recognition is a technology that is growing very rapidly. Face recognition is able to produce various information about the identity of a person quickly and accurately. One of the utility of face recognition is the ability to provide information about the gender of each person as a male or female. The process of classifying male or female is of paramount importance in many areas, such as online based businesses, access control, attendance, security systems, identification of unknown individuals, and so on. In this study Fisher Score is used as a feature selection method, and Support Vector Machine SVM as a classification method to measure the accuracy and running time of male or female classification with data used from Computer Science Research Projects. Accuracy results from SVM polynomial kernel classification d 4 with Fisher Score feature selection reaches the highest accuracy level of 100 at 3000 features with 90 training data. While the best accuracy results from SVM classification without feature selection reached 77.5 in 80 training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Frederica Yaurita
"Masalah kebangkrutan perusahaan asuransi telah menjadi perhatian khusus bagi pimpinan, karyawan, maupun nasabah perusahaan asuransi. Kekhawatiran ini muncul seiringan dengan dampak yang dapat ditimbulkan dari kebangkrutan perusahaan, yaitu perusahaan asuransi tidak mampu memenuhi kewajibannya kepada nasabah, sehingga uang premi yang telah dibayarkan oleh nasabah dalam jangka waktu tertentu menjadi sia-sia. Maka dari itu sebagai upaya untuk mencegah terjadinya kebangkrutan perusahaan asuransi, kami mencari suatu metode yang kiranya mampu mendeteksi kebangkrutan perusahaan asuransi dengan baik. Pada penelitian ini kami menggunakan beberapa algoritma machine learning, dan ternyata nilai akurasi dari simulasi program yang dilakukan mencapai 93.00 . Ini menunjukkan bahwa algoritma machine learning yang kami gunakan pada penelitian ini dapat dijadikan alat yang efektif untuk memprediksi kebangkrutan perusahaan asuransi.

Insolvency of insurance companies has been a concern of parties such as the management, the workers, and of course the consumers of insurance companies. This concern has arisen by the impact when an insurance companies got insolvent, that is, the company is unable to fulfil their obligations to customer. So, the premium that have paid by the customer becomes useless. As the attempt to prevent the insolvency of insurance company, we were looking for methods that able to make the insolvency prediction. In this study, we used several machine learning algorithms. The results are very encouraging and show that the algorithms can be a useful tool in this sector. We found that the algorithms achieved 93.00 accuracy rate."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitri Eka Pranastuti
"Pada skripsi ini, dibahas model SIS dengan intervensi perawatan medis berupa pengobatan ke rumah sakit untuk individu terinfeksi. Model ini digunakan untuk menggambarkan dinamika penyebaran penyakit tertentu secara spasial. Model epidemi SIS akan direkonstruksi dengan melibatkan dua faktor, yaitu faktor intervensi perawatan medis, dan faktor spasial. Sejumlah individu terinfeksi diberikan intervensi perawatan medis untuk
mempercepat waktu pemulihan. Hasil dari simulasi menunjukkan bahwa mobilitas manusia dapat mempengaruhi penyebaran penyakit secara spasial. Faktor spasial terlibat dalam model dengan pendekatan persamaan diferensial parsial. Dalam skripsi ini, dibahas hasil dan interpretasi dari titik keseimbangan, analisis kestabilan, dan Basic Reproduction Number (R0), dan metode beda hingga digunakan untuk mendekati solusi numerik model dalam beberapa skenario intervensi di lapangan.

In this thesis discussed the SIS model with medical treatment intervetion in the form of hospital treatment for infected individuals. This model is used to describe the dynamic of the spatial spread of certain diseases. The SIS epidemic model will be reconstructed by involving two factors, namely Medical Treatment Intervetion factors, and spatial factors. Some infected individuals are given medical treatment intervention to accelerate
the recovery time. Simulation results show that human mobility can affect the spread ofdisease spatially. Spatial factors are involved in to the models with PDE approached. In this thesis, the results and interpretation of equillibrium, system stability analysis, and R0 are discussed, and finite difference methods used to approaches numerical solutions of models in several intervention scenarios in the field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laudza Satria Naufal Putra
"Tuberkulosis (TB) adalah penyakit yang sangat menular yang disebabkan oleh bakteri. Pada skripsi ini sebuah model epidemi SEIR dibentuk pada penyebaran penyakit tuberkulosis dengan memperhatikan infeksi lambat dan infeksi cepat. Model ini menggunakan sistem persamaaan diferensial biasa nonlinear berdimensi 4. Dilakukan kajian mengenai Basic Reproduction Number (R0), titik keseimbangan bebas penyakit atau Disease Free Equilibrium (DFE), serta analisa kestabilan lokal dan analisa bifurkasi yang dilakukan secara analitik dan numerik pada model. Metode yang digunakan untuk melakukan analisa bifurkasi yakni menggunakan Teorema yang telah dibuktikan oleh Castillo-Chavez&Song. Model yang dibentuk menunjukkan adanya kemungkinan terjadi bifurkasi mundur yang ditandai dengan munculnya dua titik ekuilibrium endemik saat nilai R0 < 1.

Tuberculosis (TB) is a highly contagious disease caused by bacteria. In this paper, a SEIR epidemic model was formed in the spread of tuberculosis with regard to slow infection and fast infection. This model uses a dimensionless nonlinear ordinary differential equation system. A study is conducted on Basic Reproduction Number (R0), Disease Free Equilibrium (DFE), and local stability analysis and analytical and numerical bifurcation analysis on the model. The method used to carry out bifurcation analysis is using the theorem that has been proven by Castillo-Chavez & Song. The model formed shows the possibility of a backward bifurcation which is indicated by the appearance of two endemic equilibrium points when the value of Ro < 1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andy Hermawan
"Penggunaan biolarvasida bisa menjadi solusi dari pencegahan malaria yang ramah lingkungan. Pada skripsi ini dibahas model deterministik penyebaran malaria yang melibatkan penggunaan biolarvasida. Model ini dikonstruksi berdasarkan model SIS dengan sistem persamaan differensial biasa berdimensi lima. Terdapat dua titik keseimbangan yaitu titik keseimbangan bebas penyakit dan endemik. Titik-titik keseimbangannya serta kestabilan lokal maupun globalnya akan dianalisis secara analitik. Diperoleh R_0 sebagai bilangan reproduksi dasar sebagai penentu apakah penyakit endemik atau tidak. Analisis sensitivitas pada R_0 dan simulasi numerik menunjukkan bahwa laju transmisi malaria dari nyamuk ke manusia dan kematian nyamuk yang disebabkan biolarvasida mempengaruhi penyebaran penyakit malaria pada populasi manusia.

The use of biolarvasida can be a solution to malaria prevention that is environmentally friendly. In this paper, a deterministic model of malaria spread involving the action of biolarvasida is discussed. This model is constructed based on the SIS model with a system of ordinary differential equations with a dimension of five. There are two equilibrium points, which are disease-free and endemic points. The equilibrium points, local stability and global stability will be analyzed analytically. Obtained R_0 as a basic reproductive number as a determinant of whether the disease is endemic or not. With a sensitivity analysis at R_0 and using numerical simulations it was found that the rate of transmission of malaria from mosquitoes to humans and mosquito deaths caused by biolarvasida affected the spread of malaria in the human population."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8   >>