Urgensi personalisasi e-commerce saat ini didorong oleh beberapa faktor, diantaranya pertumbuhan pasar e-commerce, ekpektasi konsumen, information overload dan keuntungan yang signifikan bagi pengembang. Akan tetapi, menerapkan personalisasi e-commerce yang efektif bukanlah permasalahan yang mudah (non-trivial). Terdapat berbagai macam tantangan dari setiap proses personalisasi, mulai dari tahap memahami konsumen, menyajikan personalisasi hingga tahap mengevaluasi dampak personalisasi. Saat ini, penelitian pada bidang ilmu komputer banyak memfokuskan studi pada tahap memahami konsumen dan menyajikan personalisasi. Di sisi lain, tahapan terakhir yakni evaluasi belum dieksplor sehingga evaluasi performa personalisasi e-commerce yang ada belum efektif. Beberapa penyebab masalah ini di antaranya adalah tujuan dan metrics yang tidak jelas, evaluasi hanya menggunakan perspektif teknis, dan terbatasnya metode evaluasi performa personalisasi. Untuk itu penelitian ini mencoba untuk mengusulkan metode yang metrics evaluasi dipetakan berdasarkan tujuannya dengan jelas. Selain itu, metode ini juga tidak hanya mengevaluasi dari perspektif teknis, tetapi juga bisnis. Pengembangan metode dilakukan berdasarkan hasil analisis data primer (wawancara) dan data sekunder (literatur). Setelah itu metode diuji engan pendekatan online dan offline menggunakan dataset Amazon dan MovieLens. Kesimpulannya, hasil pengembangan metode ini jika dibandingkan metode Carvalho tidak hanya menggunakan perspektif teknis, tetapi juga bisnis berupa akurasi, cakupan konsumen dan daya tarik produk yang dipersonalisasi.
The urgency of e-commerce personalization is currently driven by several factors, including e-commerce growth, consumer expectations, information overload and significant benefits for enterprise. However, implementing an effective e-commerce personalization is a non-trivial problem. There are several challenges in every personalization process, start from understanding consumers, presenting personalization and evaluating personalization performance. Today, research in computer science focuses on understanding consumers and presenting personalization only. On the other hand, the evaluation process has not been explored. It causes ineffectiveness in the evaluation of e-commerce personalization. The causes of this problem are unclear goals and metrics, technical perspective only, and limited methods of evaluating personalization performance. Therefore, this research proposes a method which evaluation metrics are mapped based on their objectives clearly. In addition, this method also not only evaluates from a technical perspective, but also business perspectives. Method development is based on the analysis results of primary data (interviews) and secondary data (literatures). The proposes method was tested with online and offline approaches using the Amazon dataset and MovieLens. In conclusion, the results of developing this method when compared to the Carvalho’s method have another insight not only technical perspective but also business perspective, including consumer coverage and attractiveness.
"
Sistem Isyarat Bahasa Indonesia (SIBI) adalah sistem bahasa isyarat yang diakui secara resmi oleh Departemen Pendidikan dan Kebudayaan Indonesia dan digunakan sebagai salah satu media komunikasi dalam proses pembelajaran di SLB (Sekolah Luar Biasa) bagi kaum tunarungu. Bagi kaum awam yang sama sekali tidak mengetahui gerakan isyarat SIBI tentunya akan mengalami kesulitan ketika harus berkomunikasi dengan kaum tunarungu. Berangkat dari hal tersebut, diperlukan suatu sistem penerjemah dari gerakan SIBI ke teks Bahasa Indonesia, ataupun sebaliknya dari teks Bahasa Indonesia ke gerakan SIBI. Penelitian ini merupakan tahapan awal dari sistem penerjemah dari teks Bahasa Indonesia ke bahasa isyarat yang memiliki fokus untuk melakukan proses pembangkitan gerakan isyarat dari suatu kalimat menjadi isyarat SIBI dalam bentuk animasi tiga dimensi gerakan tangan dan jari pada platform telepon pintar. Proses pembangkitan gerakan dimulai dari proses dekonstruksi kalimat menjadi komponen-komponen kata penyusunnya menggunakan look-up table kata berimbuhan, kata dasar, dan kamus slang. Komponen-komponen kata lalu direferensikan dengan animasi gerakannya. Data gerakan didapat melalui proses perekaman menggunakan sensor motion-capture perception neuron v2 yang mengacu pada kamus SIBI. Dalam proses penyusunan gerakan-gerakan SIBI, akan terdapat jeda antara gerakan awal menuju gerakan selanjutnya. Sehingga diperlukan beberapa gerakan transisi yang dibangkitkan menggunakan interpolasi cross-fading. Berdasarkan hasil evaluasi yang telah dilakukan, gerakan yang dibangkitkan dapat merepresentasikan gerakan SIBI yang benar dengan nilai akurasi terbesar 97.56%, dan 84% hasil pembangkitan dinyatakan Sangat Puas, 14% Puas, serta 2% Cukup.
Sign System for Bahasa Indonesia (SIBI) is the official sign language authorized by The Ministry of Education and Culture of Indonesia and being used as one of the communication media by School for Children with Special Needs (SLB) for people with hearing impairments in the process of learning. For people who have a lack of knowledge about SIBI gestures certainly will have difficulty to communicate with people with hearing impairments. Thus, a translation system from SIBI gestures to sentences in Bahasa Indonesia or vice versa is needed. This research is the initial stage of a translation system from sentences in Bahasa Indonesia to SIBI Gestures. The focus of this research is to generate sign gestures in the form of 3D Animation from a sentence input in text format and deployed on the smartphone device. The generation process started from deconstructing the input sentence into its word components using a look-up table that consists of affixes, root words, and a slang dictionary. Then, this word components referred to their gesture animations. The gesture data were recorded with motion-capture sensor Perception Neuron v2 and using the official SIBI Dictionary as reference. In the process of combining the SIBI gestures, a pause between the initial gesture and the next gesture has occurred. Thus, transition gestures also needed to be generated using the cross-fading interpolation. Based on evaluation results, generated gestures correctly represent smooth SIBI gestures with the largest accuracy score of 97.56% with a level of Very Satisfied 84%, Satisfied 14%, Fair 2%.
"