Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 6 dokumen yang sesuai dengan query
cover
Noer Fitria Putra Setyono
"SIBI merupakan bahasa isyarat resmi yang digunakan di Indonesia. Penggunaan SIBI seringkali ditemukan permasalahan karena banyaknya gerakan isyarat yang harus diingat. Penelitian ini bertujuan untuk mengenali gerakan isyarat SIBI dengan cara mengekstraksi fitur tangan dan wajah yang kemudian diklasifikasikan menggunakan Bidirectional Long ShortTerm Memory (BiLSTM). Ekstraksi fitur yang digunakan dalam penelitian ini adalah Deep Convolutional Neural Network (DeepCNN) seperti ResNet50 dan MobileNetV2, di mana kedua model tersebut digunakan sebagai pembanding. Penelitian ini juga membandingkan performa dan waktu komputasi antara kedua model tersebut yang diharapkan dapat diterapkan pada smartphone nantinya, dimana model tersebut akan diimplementasikan. Hasil penelitian menunjukkan bahwa penggunaan model ResNet50-BiLSTM memiliki kinerja yang lebih baik dibandingkan dengan MobileNetV2-BiLSTM yaitu 99,89%. Namun jika akan diaplikasikan pada arsitektur mobile, MobileNetV2-BiLSTM lebih unggul karena memiliki waktu komputasi yang lebih cepat dengan performa yang tidak jauh berbeda jika dibandingkan dengan ResNet50-BiLSTM.

SIBI is a sign language that is officially used in Indonesia. The use of SIBI is often found to be a problem because of the many gestures that have to be remembered. This study aims to recognize SIBI gestures by extracting hand and facial features which are then classified using Bidirectional Long ShortTerm Memory (BiLSTM). The feature extraction used in this research is Deep Convolutional Neural Network (DeepCNN) such as ResNet50 and MobileNetV2, where both models are used as a comparison. This study also compares the performance and computational time between the two models which is expected to be applied to smartphones later, where both models can now be implemented on smartphones. The results showed that the use of ResNet50-BiLSTM model have better performance than MobileNetV2-BiLSTM which is 99.89\%. However, if it will be applied to mobile architecture, MobileNetV2-BiLSTM is superior because it has a faster computational time with a performance that is not significantly different when compared to ResNet50-BiLSTM."
Depok: Fakultas Komputer Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Oemar Syarief Wibisono
"Beras merupakan makanan pokok mayoritas masyarakat Indonesia. Jika dibandingkan dengan konsumsi tahun 2019, konsumsi beras nasional meningkat sekitar 4,67 persen pada tahun 2021. Hal ini menunjukan bahwa setiap tahun konsumsi beras nasional akan meningkat karena seiring dengan pertumbuhan jumlah penduduk Indonesia. Sehingga dibutuhkan data produksi beras yang akurat dan tepat waktu untuk dapat menjaga ketersediaan stok beras nasional. Data citra satelit bisa menjadi alternatif untuk memprediksi produksi padi dikarenakan kekurangan yang dimiliki oleh metode survei yang dilakukan oleh BPS yaitu biaya yang cukup tinggi dan terdapat tenggang waktu diseminasi data. Gabungan citra SAR dan Optik dapat meningkatkan akurasi dari model yang dibangun. Selain itu penggunaan model deep learning memiliki akurasi yang lebih baik jika dibandingkan metode machine learning konvensional salah satunya kombinasi CNN dan Bi-LSTM yang mampu mengekstraksi fitur serta memiliki kemampuan untuk memodelkan data temporal dengan baik. Output yang diperoleh dengan menggunakan metode CNNBiLSTM untuk mengklasifikasikan fase pertumbuhan padi, menghasilkan akurasi yang terbaik dengan nilai akurasi 79,57 pada data testing dan 98,20 pada data training serta F1-score 79,78. Dengan menggunakan kombinasi data citra sentinel 1 dan 2 akurasi dari model LSTM dapat ditingkatkan. Selanjutnya akurasi yang didapatkan untuk model regresi produktivitas padi masih kurang baik. Akurasi terbaik dihasilkan oleh model random forest dengan nilai MAPE 0.1336, dan RSME 0,6871.

Rice is the staple food of the majority of Indonesian people. When compared to consumption in 2019, national rice consumption will increase by around 4.67 percent in 2021. This shows that every year rice consumption will increase in line with the growth of Indonesia's population. So that accurate and timely rice production data is needed to be able to maintain the availability of national rice stocks. Satellite imagery data can be an alternative for predicting rice production due to the drawbacks of the survey method conducted by BPS, which relatively high cost and the time span for data dissemination. The combination of SAR and Optical images can increase the accuracy of the model built. In addition, the use of deep learning models has better accuracy when compared to classical machine learning methods, one of them is the combination of CNN and Bi-LSTM which are able to extract features and have the ability to model temporal data properly. The output obtained using the CNNBiLSTM method to classify rice growth phases, produces the best accuracy with an accuracy value of 79.57 on testing data and 98.20 on training data and an F1-score of 79.78. By using a combination of sentinel 1 and 2 image data, the accuracy of the LSTM model can be improved. Furthermore, the accuracy obtained for the rice production regression model is still not good. The best accuracy was produced by the random forest model with a MAPE value of 0.1336 and RSME of 0.6871."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Renni Angreni
"Tesis ini membahas dan menjelaskan mengenai implementasi algoritma Line Hough Transform dan Circular Hough Transform dalam mendeteksi
kemungkinan keberadaan garis dan lingkaran pada citra karakter numerik dan operator matematika sederhana hasil tulisan tangan. Ciri ini akan digunakan sebagai nilai karakteristik dalam proses pengenalannya dimana proses pengenalan
ini juga memerlukan validasi terhadap tiap garis dan lingkaran yang ditemukan melalui proses grouping dan trending, baik pada penerapan LHT maupun pada penerapan CHT. Untuk tahap identifikasi perhitungan matematika sederhana setelah proses pengenalan tiap karakternya, memanfaatkan hasil segmentasi objek sehingga posisi suatu karakter dapat diketahui. Penentuan range nilai yang digunakan dalam validasi trend lines dan trend circles LHT dan CHT pada sistem ini dilakukan melalui analisis sejumlah data sampel. Pendeteksian garis dan lingkaran ini juga sangat dipengaruhi oleh nilai threshold yang diberikan sebagai
nilai ambang batas dalam melakukan voting accumulator array. Dalam penelitian ini, nilai threshold diperoleh dari hasil uji coba dan threshold yang cocok yang diimplementasikan pada sistem merupakan suatu fungsi yang relatif terhadap ukuran segmentasi objek. Penerapan teknik segmentasi dan thinning dalam penelitian ini juga memperkecil effort yang harus dikerjakan oleh sistem pada pemrosesan LHT dan CHT. Hasil pengujian sistem melalui beberapa skenario eksperimen memberikan nilai rata-rata precision untuk uji coba pengenalan karakter-karakter secara individual sebesar 98.13% dan rata-rata recall nya sebesar 94% terhadap 450 citra yang diujikan, sedangkan nilai akurasi untuk ketepatan pengenalan dan perhitungan matematika hasil tulisan tangan diperoleh
sebesar 90%.

This thesis discusses and explains about the implementation of Line Hough Transform and Circular Hough Transform algorithm to detect the possible presence of lines and circles on the handwriting image of numeric characters and
simple math operators. These characteristics will be used as characteristic values in recognition phase where this process also requires validation of each line and each circle that is found through grouping and trending process, either on implementation of LHT or CHT. For identification of simple mathematical calculation phase after recognition process of each character, the results of object segmentation are used to determine the position of characters. The definition of range values that is used in trend lines and trend circles validating process from LHT and CHT in this system was obtained from the analysis of a number of
training data. This lines and circles detection is also heavily influenced by threshold value in voting accumulator array. In this study, the threshold value is obtained from the test results and the match one is implemented in this system as a function relative to the size of the object segmentation. The object segmentation and thinning techniques also minimize the effort on processing LHT and CHT.
The results of testing the system through several experimental scenarios give an average precision value of 98.13% and an average recall value of 94% for individual characters recognition trials on 450 testing images. The accuracy for recognition and identification of mathematical calculation on handwriting images
is 90%.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Raditya Nurfadillah
"Sistem rekomendasi menjadi salah satu kebutuhan utama bagi penyedia layanan e-commerce untuk memberikan saran rekomendasi produk sesuai dengan apa yang diinginkan oleh pengguna. Salah satu pendekatan yang paling banyak dilakukan dalam membangun sistem rekomendasi adalah collaborative filtering, dengan menggunakan data explicit feedback, yang dapat berupa review atau rating. Sistem rekomendasi dengan pendekatan collaborative filtering telah banyak dikembangkan dengan menggunakan metode machine learning dan metode deep learning. Penelitian ini berfokus untuk mengembangkan sistem rekomendasi dengan pendekatan collaborative filtering berbasis deep learning dengan menggunakan data gabungan review dan rating. Teknik deep learning yang digunakan diperkaya dengan word embeddings untuk dapat menangkap interaksi yang terdapat dalam data review. Penelitian ini menggunakan arsitektur yang diadopsi dari CARL. Modifikasi yang dilakukan pada CARL meliputi pengubahan optimizer dan penggunaan beberapa pretrained word embedding yang berbeda. Selain itu, penelitian ini juga membandingkan performa sistem rekomendasi yang diusulkan antara dataset berbahasa Inggris dan berbahasa Indonesia. Untuk melakukan evaluasi performa sistem rekomendasi yang dikembangkan, digunakan metrik evaluasi mean squared error (MSE). Hasil penelitian menunjukkan modifikasi model CARL (Review-based) dengan menggunakan optimizer Adam (CARL (Review-based) – Adam) menunjukkan performa terbaik dan dapat mengalahkan performa dari baseline model.

Recommender systems are one of the main needs for e-commerce to provide product recommendations according to what the users want. One of the most widely used approaches in developing recommender systems is collaborative filtering, using explicit feedback data, which can be in the form of reviews or ratings. Various collaborative filtering methods have been developed using machine learning and deep learning methods. This study focuses on developing deep learning-based recommender systems with collaborative filtering approach using combined reviews and ratings data. The deep learning technique that being used is enriched with word embeddings to capture the interactions contained in the review data. This study uses an architecture adopted from CARL. Modifications made to CARL include changing the optimizer and using several different pretrained word embeddings. This study also compares the performance of the proposed recommender systems between English datasets and Indonesian datasets. To evaluate the performance of the recommender systems, the mean squared error (MSE) evaluation metrics is used. The results showed that the modification of CARL (Review-based) model using Adam optimizer (CARL (Review-based) – Adam) showed the best performance and could beat the performance of the baseline model."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dina Chahyati
"Pelacakan orang banyak pada video berdasarkan hasil deteksi orang pada setiap frame merupakan problem yang menantang karena kompleksitas yang dimilikinya. Kesalahan deteksi orang pada setiap frame akan menyebabkan kesalahan pelacakan orang pada keseluruhan video. Pada penelitian ini, diusulkan metode pelacakan yang dapat meminimalkan propagasi kesalahan dari kesalahan deteksi dengan waktu pelacakan yang tidak terlalu lama. Penelitian ini menggunakan deep convolutional neural network (DCNN) seperti Faster-RCNN dan RetinaNet sebagai detektor objek dan algoritma Hungarian sebagai metode asosiasi antar orang-orang yang terdeteksi di setiap frame. Matriks masukan untuk algoritma Hungarian terdiri dari kedekatan vektor ciri DCNN yang dihasilkan oleh Siamese Network, jarak titik tengah bounding box, dan perbandingan irisan-gabungan (IoU) dari bounding box. Pada tahap akhir dilakukan interpolasi terhadap hasil pelacakan. Metode yang diusulkan menghasilkan MOTA 61.0 pada dataset benchmark pelacakan orang banyak MOT16.

Multiple object (human) tracking in video based on object detection in every frame is a challenging problem due to its complexity. Error in the detection phase will cause error in the tracking phase. In this research, a multiple human tracking method is proposed to minimize the error propagation. The method uses deep convolutional neural network (DCNN) such as Faster-RCNN and RetinaNet as object detector and Hungarian algorithm as association method among detected humans in consecutive frames. The input matrix for Hungarian algorithm consists of the similarity of DCNN feature vector resulted from Siamese network, the distance of bounding box centers, and bounding box intersection of union (IoU). In the last step, interpolation is applied to the tracking result. The proposed method achieves 61.0 MOTA in multiple object tracking benchmark MOT16."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Andie Setiyoko
"Penelitian ini bertujuan untuk menganalisis pendekatan aproksimasi minimax, LS-SVM, dan GPR untuk proses pemodelan semivariogram pada metode kriging. Proses ini adalah bagian tahap dalam operasi kriging yang biasanya dilakukan untuk proses interpolasi dan fusi. Kriging sendiri telah banyak digunakan untuk memprediksi nilai spasial yang terbukti lebih baik dalam memprediksi proses dibandingkan dengan metode deterministik, di mana kriging dikategorikan sebagai pada metode interpolasi stokastik. Pendekatan konvensional untuk proses pemodelan semivariogram menggunakan metode weighted least square dengan menggunakan fungsi tertentu. Fungsi yang tersedia untuk metode ini antar lain stable, exponential, spherical, dan lain-lain. Beberapa pembaharuan untuk kasus pemodelan semivariogram saat ini telah dibuat dengan menggunakan teknik regresi seperti LS-SVM. Selain itu sebagai bagian dari kebaruan, pendekatan aproksimasi minimax, LS-SVM, dan GPR yang diusulkan untuk kasus ini dapat meningkatkan akurasi pada hasil interpolasi, dalam hal ini diimplementasikan pada metode ordinary kriging. Pendekatan baru, yang dapat disebut sebagai minimax kriging ini dapat mengurangi eror. Minimax berkontribusi pada prediksi bobot nilai semivariogram lebih baik daripada weighted least square dan proses komputasi yang lebih cepat daripada metode berbasis SVM dan GPR.

This study aims to analyze the approach of Minimax, LS-SVM, and GPR approximation for the semivariogram modeling process in the kriging method. This process is part of the stage in kriging operations that are usually carried out for interpolation and fusion processes. Kriging itself has been widely used to predict spatial values which are proven to be better in predicting processes compared to deterministic methods, where kriging is categorized as a stochastic interpolation method. The conventional approach to the semivariogram modeling process uses the weighted least square method using certain functions. Functions available for this method include stable, exponential, spherical, and others. Several updates to the case of semivariogram modeling have now been made using regression techniques such as LS-SVM. Apart from that as part of the novelty, the proposed Minimax, LS-SVM, and GPR approximation approaches for this case can improve the accuracy of the interpolation results, in this case implemented in the ordinary kriging method. This new approach, which can be called minimax kriging, can reduce errors. Minimax contributes to the predicted weighting of semivariogram values better than weighted least square and faster computing processes than SVM and GPR-based methods."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library