Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14 dokumen yang sesuai dengan query
cover
Audi Fierera
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Suteja
Abstrak :
Graf G adalah pasangan terurut himpunan (V,E), dimana V merupakan himpunan simpul dari graf G dan E merupakan himpunan busur dari graf G. Pelabelan-k total takteratur φ:V(G)∪E(G)→{1,2,…,k} dari graf G=(V,E) adalah pelabelan dari simpul dan busur dari G sedemikian sehingga untuk setiap busur xy dan x'y' bobot φ(x)+φ(xy)+φ(y) dan φ(x^' )+φ(x^' y^' )+φ(y^' ) berbeda. tes(G) adalah nilai minimum dari k sedemikian sehingga graf G mempunyai pelabelan-k total takteratur. Pada skripsi ini akan dipaparkan hasil kajian literatur pelabelan total takteratur busur pada beberapa kelas graf yang mengandung lingkaran yaitu graf lengkap, graf bipartit lengkap, dan graf produk dari dua lingkaran
Graph G is a pair of distinct set (V,E), where V is a vertex set from graph G and E is a edge set from graph G. A total edge irregular k-labelling φ:V(G) ∪E(G)→{1,2,…,k} from graph G=(V,E) is a vertex and edge labelling such as for all edge xy and x'y' weight φ(x)+φ(xy)+φ(y) and φ(x^' )+φ(x^' y^' )+φ(y^') are different. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G aalso called tes(G). In this research, author will show result literature study on edge irregular total k-labelling from some classes graph that is complete graph, complete bipartite graph, and product of two cycle.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Khairunnisa Nur Afifah
Abstrak :
Suatu graf G terdiri dari himpunan simpul V(G) dan himpunan busur E(G). Pemberian warna pada busur suatu graf G disebut pewarnaan busur. Lintasan pelangi adalah lintasan di mana semua busur pada lintasan tidak memiliki pengulangan warna. Geodesik pelangi merupakan lintasan pelangi terpendek antara dua simpul di G. Pewarnaan pelangi kuat lokal-d, di mana d merupakan jarak antara dua simpul dan berupa bilangan bulat positif, merupakan pewarnaan di mana setiap pasangan simpul di G, dengan jarak maksimal d, terhubung oleh geodesik pelangi. Bilangan terkecil yang digunakan dalam pewarnaan tersebut disebut bilangan keterhubungan pelangi kuat lokal-d, dinotasikan dengan lsrc_d(G). Graf hasil operasi korona antara graf G dan graf H, dinotasikan dengan G\odot H, merupakan graf yang dihasilkan dengan mengambil satu salinan graf G dan m salinan graf H, di mana m adalah orde dari G, kemudian setiap simpul ke-i di G dihubungkan ke setiap simpul pada salinan ke-i dari H. Pada skripsi ini, akan ditentukan bilangan keterhubungan pelangi kuat lokal-d pada graf hasil operasi korona antara graf lingkaran untuk nilai d=2 dan d=3. A graph G consists of vertices set V(G) and edges set E(G). ......An assignment of colors to the edges of G is called an edge coloring. A rainbow path is a path where all edges in the path has no color repetition. A rainbow geodesic is a shortest rainbow path between two vertices in G. The d-local strong rainbow coloring, where d is shortened for distance between two vertices and is a positive integer, is a coloring in which every two distinct vertices in G, with distance up to d, can be connected by a rainbow geodesic. The least number of colors used in such coloring is called d-local strong rainbow connection number, denoted by lsrc_d(G). The corona product of G and H, denoted by G\odot H, is a graph obtained by taking a copy of Gand m copies of H, where m is the order of G, then every i-th vertex of G is connected to every vertex in the i-th copy of H. In this thesis, we will determine the d-local strong rainbow connection number of corona product between cycle graphs for d=2 and d=3.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Satria Ibrahim
Abstrak :
Baca, dkk. (2020) memperkenalkan sebuah modifikasi dari pelabelan tak teratur yang disebut pelabelan tak teratur modular. Mereka mendefinisikan pelabelan tak teratur modular dari graf G dengan order n sebagai pelabelan-k busur ψ∶ E(G)→{1,2,3,…,k} sedemikian sehingga terdapat fungsi bobot bijektif σ_ψ ∶V(G)→Z_n yang didefinisikan sebagai σ_ψ (u)=∑_(v∈N(u))▒〖ψ(uv)〗, dengan Z_n adalah grup bilangan bulat modulo n, N(u) adalah himpunan simpul yang bertetangga dengan u. Kekuatan tak teratur modular ms(G) dari graf G adalah nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan k sebagai label busur paling besar yang digunakan. Graf tangga L_n adalah graf hasil produk kartesian P_n×P_2. Graf tangga mobius M_n didapatkan dari graf tangga L_n dengan menghubungkan simpul akhir yang berlawanan dari dua salinan P_n. Pada penelitian ini akan ditentukan kekuatan tak teratur modular ms(G) untuk graf tangga mobius dan graf tangga. ......Baca, dkk. (2020) introduced a modification of irregular labeling called modular irregular labeling. They defined a modular irregular labeling of a graph G of order n as an edge k-labeling ψ∶ E(G)→{1,2,3,…,k} such that there is a bijective weight function σ_ψ ∶V(G)→Z_n which is defined as σ_ψ (u)=∑_(v∈N(u))▒〖ψ(uv)〗, where Z_n is a group of integers modulo n, N(u) is the set of all vertices adjacent to u. Modular irregularity strength ms(G) of graph G is the minimum value k such that graph G has a modular irregular labeling with k as the largest label used. Ladder graph L_n is the cartesian product of graphs P_n×P_2. Mobius Ladder graph M_n is obtained from ladder graph L_n by joining the opposite end points of the two copies of P_n. In this research, we determine the modular irregularity strength ms(G) of mobius ladder graph and ladder graph.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lenni Fitri Anwar
Abstrak :
Misalkan $G=(V(G),E(G))$ merupakan suatu graf dengan himpunan simpul tak kosong berhingga $V(G)$ dan himpunan busur $E(G)$. Misalkan $G$ memiliki order $n$. Pelabelan busur $\varphi: E(G) \rightarrow \{1,2,\cdots,k\}$, dengan $k \in \mathbb{Z}^+$, disebut pelabelan-$k$ tak teratur modular jika terdapat fungsi bobot bijektif $\sigma:V(G) \rightarrow \mathbb{Z}_n$ dengan $\mathbb{Z}_n$ merupakan himpunan bilangan bulat modulo $n$. Fungsi $\sigma(v)=\sum_{\forall u \in N(v)} \varphi(uv) \mod n$ disebut bobot modular dari simpul $v\in V(G)$. $N(v)$ merupakan himpunan simpul yang bertetangga dengan simpul $v.$ Kekuatan tak teratur modular dari graf $G$, dinotasikan dengan $ms(G)$, merupakan nilai minimum $k$ sedemikian sehingga graf $G$ memiliki pelabelan-$k$ tak teratur modular. Graf bunga matahari ${Sf}_m$ merupakan graf yang dibangun dari graf roda $W_m,$ $m \geq 3,$ dengan simpul pusat $c$, simpul pada lingkaran-$m$ $v_1,v_2,\ldots,v_m$ dan tambahan $m$ simpul $w_1,w_2,\ldots,w_m$ dengan $w_i$ dihubungkan ke simpul $v_i$ dan $v_{i+1},$ $i=1,2,\ldots,m,$ dengan $v_{m+1}=v_1$ dan $v_0=v_m$. Pada penelitian ini dikontruksi fungsi pelabelan tak teratur modular pada graf bunga matahari ${Sf}_m$, $m\geq 3$, sehingga dapat ditentukan nilai kekuatan tak teratur modularnya. ......Let $G=(V(G),E(G))$ be a graph with $V(G)$ is a nonempty finite vertex set and $E(G)$ is an edge set, which has order $n$. Edge $k-$labeling $\varphi: E(G) \rightarrow \{1,2,\cdots,k\}$, where $k \in \mathbb{Z}^+$, is called a modular irregular labeling of a graph $G$ if there exists a bijective weight function $\sigma:V(G) \rightarrow \mathbb{Z}_n$ where $\mathbb{Z}_n$ is a set of modulo $n$. Function $\sigma(v)=\sum_{\forall u \in N(v)} \varphi(uv) \mod n$ is called modular weight of vertex $v$. $N(v)$ denotes the set of all vertices that adjacent to $v$. The modular irregularity strength of a graph $G$, denoted by $ms(G)$, is the minimum number $k$ such that a graph $G$ has modular irregular $k$-labeling. The sunflower graph ${Sf}_m$ is a graph which constructed from a wheel graph $W_m$ with center vertex $c$ and $m$-cycle $v_1,v_2,\ldots,v_m$ and additional vertices $w_1,w_2,\ldots,w_m$ where $w_i$ is adjacent to $v_i$ and $v_{i+1}$, $i=1,2,\ldots,m$, with $v_{m+1}=v_1$ and $v_0=v_m$. This research shows the construction of modular irregular labeling on sunflower graph and its modular irregularity strength.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fabian Andhika Pratama
Abstrak :
Misalkan Gadalah graf sederhana dengan himpunan simpul yang tak kosong V(G) dan himpunan busur E(G) serta V(G) menyatakan banyaknya simpul pada graf G dan E(G) menyatakan banyaknya busur pada graf G. Pelabelan total super simpul antiajaib lokal (PTSSAL) pada graf G adalah fungsi bijektif f yang memetakan gabungan dari V(G) dan E(G) ke himpunan {1, 2, …, |V(G)|+|E(G)|} yang memenuhi kondisi f(V(G)) = {1, 2, …, |V(G)|}, sedemikian sehingga w(u) tidak sama dengan w(v) untuk setiap pasangan simpul bertetangga u dan v dengan w(u) sama dengan f(u) dijumlahkan dengan hasil penjumlahan dari label-label busur yang hadir terhadap simpul u. Nilai minimum dari banyaknya bobot yang berbeda pada pelabelan total super simpul antiajaib lokal yang dibutuhkan untuk suatu graf G disebut sebagai bilangan kromatik total super simpul antiajaib lokal. Graf pohon pisang B_(n,k) adalah graf yang diperoleh dengan menghubungkan satu daun dari setiap n-salinan graf bintang S_k kepada suatu simpul akar. Pada tahun 2018, telah ditemukan batas atas untuk bilangan kromatik total simpul antiajaib lokal pada graf pohon pisang B_(n,k). Pada penelitian ini dikonstruksi pelabelan total super simpul antiajaib lokal untuk graf pohon pisang B_(n,k) untuk menentukan nilai bilangan kromatik total super simpul antiajaib lokal pada graf pohon pisang B_(n,k) dengan n dan k adalah bilangan asli dan n serta k bernilai lebih besar atau sama dengan 3. ......Let G be a simple graph with a nonempty vertex set |V(G)| and edge set |E(G)| where |V(G)| denotes the number of vertices of G and |E(G)| denotes the number of edges of G. Super vertex local antimagic total labeling on graph G is a bijective function f that maps union of V(G) and E(G) to the set{1, 2, …, |V(G)|+|E(G)|} that satisfies the condition f(V(G)) = {1, 2, …, |V(G)|}, such that w(u) is not equal to w(v) for every adjacent vertices u and vwith w(u) is equal to the f(u) added to the sum of labels from edges that are incident to vertex u. The minimum number of different weights needed on super vertex local antimagic total labeling on graph is referred as super vertex local antimagic total chromatic number. A banana tree B_(n,k) is a graph that is obtained by connecting single leaf from every n-copy of star graph S_k to a root vertex. In 2018, the upper bound for vertec local antimagic total chromatic number has been found for banana tree graph B_(n,k). The research finds the construction of the super vertex local antimagic total labeling on banana tree graph B_(n,k) to determine the number of super vertex local antimagic total chromatic number from banana tree graph B_(n,k) where n and k are natural numbers and n also k are greater or equal to 3.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fauzan
Abstrak :
Misalkan G = (V, E) adalah suatu graf dengan himpunan simpul V(G) dan himpunan busur E(G), serta |V(G)| menyatakan banyak simpul dan |E(G)| menyatakan banyak busur. Pelabelan dari graf G adalah suatu pemetaan f dari himpunan simpul atau busur ke suatu himpunan label yang umumnya berisi bilangan bulat positif. Suatu pelabelan dari graf G disebut pelabelan total jika domain dari pemetaan tersebut adalah himpunan simpul dan himpunan busur. Suatu pelabelan dari graf G disebut pelabelan total busur antiajaib-(a,d) jika terdapat bijeksi f dari gabungan V(G) dan E(G) ke himpunan {1, 2, …, |V(G)|+|E(G)|} sedemikian sehingga himpunan dari bobot busur {f(u)+f(uv)+f(v) | uv ∈ E(G)} sama dengan {a, a+d, …, a+(|E(G)|-1)d} untuk suatu bilangan bulat a > 0 dan d ≥ 0. Suatu pelabelan total busur antiajaib-(a,d) pada graf G disebut super jika label pada simpul adalah 1, 2, …, |V(G)|. Pada studi literatur ini, diberikan bukti lengkap dari pelabelan total super busur antiajaib-(a,d) dari gabungan dua graf lintasan dengan banyak simpul yang sama. ......Let G = (V, E) be a graph with vertex set V(G) and edge set E(G), where |V(G)| denotes the number of vertices and |E(G)| denotes the number of edges. A labeling of graph G is a mapping f from the vertex set or the edge set to a set of labels, which usually is positive integers. A labeling is called total labeling if the domain of the mapping is the union of vertex set and edge set. A labeling of graph G is called (a,d)-edge antimagic total labeling if there exists a bijection f from the union of V(G) and E(G) to the set {1, 2, …, |V(G)|+|E(G)|} such that the set of edge weights {f(u)+f(uv)+f(v)│uv ∈ E(G) } is {a, a+d, …, a+(|E(G)|-1)d} for some positive integer a > 0 and d ≥ 0. An (a,d)-edge antimagic total labeling of G is called super if the labels on the vertices are 1, 2, …, |V(G)|. This literature study will include complete proof of super (a,d)-edge antimagic total labeling of disjoint union of two paths.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zeveliano Zidane Barack
Abstrak :
Misalkan G = (V,E) adalah graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pelabelan tak teratur dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} dari graf G sedemikian sehingga bobot dari seluruh simpul berbeda. Bobot dari simpul u ∈ V didefinisikan sebagai wtφ(u) = v∈N(u) φ(uv), dengan N(u) adalah himpunan simpul yang bertetangga dengan u. Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur dengan label paling besar k disebut sebagai kekuatan tak teratur dari graf G. Misalkan G adalah graf dengan order n, pelabelan tak teratur modular dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} sedemikian sehingga terdapat fungsi bobot yang bijektif wtφ : V → Zn , dengan Zn adalah grup bilangan bulat modulo n. Bobot modular didefinisikan dengan wtφ(u) = v∈N(u) φ(uv). Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan label paling besar k disebut kekuatan tak teratur modular dari graf G. Graf friendship dibangun dari kumpulan graf lingkaran C3 dengan sebuah simpul pusat bersama. Pada penelitian ini, akan dikonstruksi pelabelan tak teratur modular untuk graf friendship dan ditentukan kekuatan tak teratur modular untuk graf friendship. ......Let G = (V,E) be a graph with V is the vertex set and E is the edge set of G. Irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} of a graph G such that every weights of the vertices are all different. The weight of vertex u ∈ V is defined by wtφ(u) = v∈N(u) φ(uv), where N(u) denotes the set of all vertices that adjacent to u. The minimum number k such that a graph G has irregular labeling with largest label k is called irregularity strength of G. Let G be a graph with order n, modular irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} such that there exists a bijective weight function wtφ : V → Zn, where Zn is a group of modulo n. The modular weight is defined by wtφ(u) = v∈N(u) φ(uv). The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G. The friendship graph is constructed by a set of cycle graphs C3 with a common central vertex. In this research, we construct the modular irregular labeling for friendship graph and determine its modular irregularity strength.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Putu Putra Gemilang Adi Guna
Abstrak :
Misalkan 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) adalah suatu graf dengan order 𝑛, dengan 𝑛 merupakan bilangan bulat. Notasi 𝑉(𝐺) menyatakan himpunan simpul dan notasi 𝐸(𝐺) menyatakan himpunan busur. Pemetaan 𝛾: 𝐸(𝐺) → {1,2, … , 𝑘}, dengan 𝑘 adalah bilangan bulat, adalah pelabelan modular tak teratur dari graf G jika terdapat suatu fungsi bijektif 𝜎: 𝑉(𝐺) → 𝑍𝑛 yang didefinisikan sebagai 𝜎(𝑥) = (∑𝛾(𝑥𝑦)) mod 𝑛 untuk setiap y yang bertetangga dengan x sehingga nilai 𝜎(𝑥) berbeda untuk setiap 𝑥 ∈ 𝑉(𝐺). Nilai ketakteraturan modular dari graf 𝐺 adalah nilai minimum 𝑘 sedemikian sehingga terdapat pelabelan modular tak teratur dapat diterapkan ke graf 𝐺. Graf dodecahedral adalah graf planar 3-terhubung yang berhubungan dengan konektivitas simpul dodekahedron. Terdapat 2 macam simpul pada graf dodecahedral yaitu simpul luar dan simpul dalam dan semua simpul memiliki derajat 3. Graf dodecahedral yang diperumum adalah graf yang dibangun dari graf dodecahedral dengan menambahkan 2 busur pada simpul dalam sedemikian sehingga seluruh simpul dalam memiliki derajat 5. Graf dodecahedral yang diperumum dapat dibentuk dengan order bilangan bulat genap lebih dari atau sama dengan 10. Pada skripsi ini, dibahas pelabelan modular tak teratur pada graf dodecahedral yang diperumum. ......Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a graph of order 𝑛 , with 𝑛 is an integer. Notation 𝑉(𝐺) represents a set of vertices and 𝐸(𝐺) represents a set of edges. A labeling 𝛾: 𝐸(𝐺) → {1,2, … , 𝑘}, with integer 𝑘, is called modular irregular labelling of the graph 𝐺 if there exist a bijective function 𝜎: 𝑉(𝐺) → 𝑍𝑛 defined by 𝜎(𝑥) = (∑𝛾(𝑥𝑦)) mod 𝑛 for every 𝑦 adjacent to 𝑥, such that the weight 𝜎(𝑥) is different for every 𝑥 ∈ 𝑉(𝐺). The minimal 𝑘 for which the graph 𝐺 admits a modular irregular labelling is called modular irregularity strength of graph 𝐺. Dodecahedral graph is the 3-connected planar graph corresponding to the connectivity of the vertices of dodecahedron. There are 2 kinds of vertices in the dodecahedral graph, inner vertices and outer vertices and all of the vertices has degree 3. Generalized Dodecahedral Graph is a graph that is built from dodecahedral graph by adding 2 additionals edge on each of the inner vertice so that all of the inner vertices have degree 5. Generalized dodecahedral graph can be formed with order of even integer greater than or equal to 10. In this skripsi, it will be discussed the modular irregular labelling of generalized dodecahedral graphs.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ridho Surya Perkasa
Abstrak :
Misalkan (D_2n,∘) adalah grup dihedral orde 2n didefinisikan sebagai D_2n={f^i¬ g^j ┤| f^2=g^n=e,i=0,1 ;j=0,1,2,∙∙∙,n-1} dengan operasi komposisi fungsi ∘, elemen f adalah pencerminan terhadap sumbu x di R^2 dan elemen g adalah rotasi sebesar 2π/n derajat berlawanan arah jarum jam di R^2. Graf Cayley orde prima pada grup G(Cay_P (G,S)) adalah graf Cayley dimana himpunan penghubung S adalah himpunan setiap elemen G yang memiliki orde prima. Himpunan S merupakan invers-closed. Himpunan S disebut sebagai himpunan penghubung dan memengaruhi bentuk graf Cay_P (G,S) pada grup G. Pada penelitian ini, ditinjau banyak graf Cayley orde prima yang dapat dibangun dari grup dihedral, bilangan kromatik dari graf Cayley orde prima dari grup dihedral(χ(Cay_P (D_2n,S)), diameter dari graf Cayley orde prima dari grup dihedral(diam(Cay_P (D_2n,S)) dan keplanaran dari Cay_P (D_2n,S). ......Let (D_2n,°) be a dihedral group order 2n, defined by D_2n={f^i g^j ┤| f^2=g^n=e,i=0,1 ;j=0,1,2,⋯,n-1}, with ° is a composition function operation, element f is a reflection through x axis in R^2and element g is a rotation about 2π/n degree counterclockwise in R^2. Prime-order Cayley graph or Cay_P (G,S) is a Cayley graph where S is a set of elements in G that have prime order. The set S is called the connecting set and affects the shape of graph Cay_P (G,S) in group G. In this study is examined the number of prime-order Cayley graphs can be built in the dihedral group, the chromatic number of the prime-order Cayley graphs in the dihedral group (χ( Cay_P (D_2n,S)), the diameter of a prime order Cayley graph in the dihedral group (diam(Cay_P (D_2n,S)) and the planarity of graph Cay_P (D_2n,S) are studied.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>