Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 252759 dokumen yang sesuai dengan query
cover
Melani Salmadini
"Penerapan Manajemen Risiko baik bagi institusi keuangan ataupun institusi lain dirasa semakin diperlukan. Bila pada perbankan pelaksanaanya sudah diatur secara detil dalam Basle Accord dan diawasi ketat oleh Bank Indonesia sebagai Bank Sentral Republik Indonesia. Maka bagi institusi keuangan lain seperti asuransi, hal ini belum diatur sedemikian detil. Namun untuk menjaga kesehatan suatu perusahaan asuransi. Pemerintah teiah menetapkan ketentuan ketentuan Solvabilitas Minimum (BTSM). Salah satu ketentuannya adalah menentukan pengenaan faktor risiko tertentu pada aset saham yang dimiliki.
Pada tesis ini Penulis mencoba untuk mengaplikasikan penerapan manajemen risiko dengan menghitung nilai Value at Risk (VaR) dengan menggunakan dua metode yaitu metode Variance Covariance dan metode Historical Simulation kemudian membandingkan dengan faktor risiko yang ditetapkan oleh Pemerintah dalam ketentuan BTSM tersebut. Hasilnya menemukan bahwa nilai VaR yang dihasi1kan dengan menggunakan metode historical simulation tidak valid dan Penulis menyarankan untuk menggunakan metode Variance Covariance sebagai metode dalam pengambilan keputusan investasi. Sedangkan BTSM dapat dilakukan untuk mengalokasikan modal.

Applying risk management to financial institution or any other institutions is increasingly necessary. While the implementation of risk management in banking had been arranged in detail by Basle Accord and strictly supervised by Bank of Indonesia as a central bank of Republic of Indonesia, not in other financial institution like insurance. For an insurance institution to be solvency, government has carried out the regulation by stipulating The Minimum Solvability Rate Limit. One of those stipulations is to put risk factor as a subject in the share asset possession.
In this thesis, the Writer try to applicate the implementation of risk management by calculating value at risk (VaR) using two method Variance Covariance and Historical Simulation then compare it to risk factor determined in The Minimum Solvability Rate Limit. As the result is value at risk (VaR) using historical simulation is not valid, while only the variance covariance method is. So the Writer recommended to use variance covariance method to be used in taking investment decision and use The Minimum Solvability Rate Limit for a capital allocation.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2009
T31980
UI - Tesis Open  Universitas Indonesia Library
cover
Jorion, Philippe
New York: McGraw-Hill, 2007
658.159 5 JOR v
Buku Teks SO  Universitas Indonesia Library
cover
Beni Syamsiar
"Penelitian ini bertujuan untuk membandingkan dua metode value at-risk, delta-normal dan historical simulation diaplikasikan pada sebuah portofolio. Data yang digunakan dalam penelitian adalah rerum portofolio yang terdiri dari saham­ saham LQ45 selama interval waktu Februari 2007 sampai dengan Juli 2009 yang berjumlah 596 data. Sebelum diperbandingkan, hasil kedua metode pethitungan VaR akan diuji validitasnya sebagai rnetode pengukuran menggunakan Kupiec test. Jika kedua metode dinyatakan valid, maka kedua metode lersebut akan diperbandingkan untuk menentukan mewde manakah yang lebih cocok sebagai VaR bagi portofolio tersebut Uji normaHtas akan dilakukan karena merupakan asurnsi dalam metode delta-normal. Parameter perhitungau VaR yang digunakan adalah confidence interval 95% dengan horizon waktu 20 hari.
Berdasarkan hasil pengujian Kupiec test, kedua metode dalam penelitian ini ditolak sebagai metode pengukuran VaR portofolio tersebut. Dan menurut uji normalitas, beberapa return portofolio tersebut tidak memilik.i dlstibusi normal yang berdampak metode delta-normal tidak dapat langsung diterapkan sehingga dafam perhitungannya harus menggunakan alpha prime. Hasil penelitian ini menyatakan bahwa kedua metode tersebut memiliki tingkat kesalahan yang sama, selain itu berdasarkan Kupiec test dari kedua metode tersebut tidak memiliki validitas yang baik untuk diterapkan.

This research aimed to comparing two method of Value-at-risk, that is delta­ normal and historical simulation applied to a portfolio. Data used in this research are portfolio return consisting LQ45's stock for time interval February 2007 till July 2009 with total 596 data. Before the comparison, result from both methods will be tested for its validity as a measurement method using Kupiec test. If both methods are valid, then both of methods will be compared to know which one is more suit as VaR for related portfolio. Normality test will be held because it needed for delta-normal method. Measurement parameters used are confidence interval 95% with 20 days time horizon.
Based on the result of Kupiec test, both methods rejected as VaR measurement method for related portfolio. And according to normality test, portfolio returns have a not normal distribution therefore can not be applied immediately to delta normal results are both method are have the same failure rate, but the result from Kupiec test shows that both methods are not suitable to be implemented.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2010
T32429
UI - Tesis Open  Universitas Indonesia Library
cover
Arien Yuni Harini
"Penelitian ini bertujuan untuk menggunakan atau mengaplikasikan VaR. Penelitian dilakukan untuk mengetahui situasi yang akan dihadapi investor dengan berbagai alternatif keputusan yang timbul dari penggunaan VaR, sehingga VaR dapat digunakan disebagai salah satu alat alternatif dalam pengambilan keputusan investasi. Metode yang digunakan dalam penelitian adalah pengumpulan data primer dan studi kepustakaan. Sedangkan metode perhitungan digunakan metode Historical Simulation dan Variance-covariance dengan bantuan program spreadsheet Microsoft Excel 97. Data primer yang dikumpulkan adalah harga saham per hari selama satu tahun (1 Mei 1998 - 30 April 1999) secara random dengan mengumpulkan dua saham untuk setiap industri (10 industri). Dari hasil perhitungan dapat diketahui kondisi yang dihadapi oleh investor apabila investor mempunyai portofolio seperti dalam penelitian. Dengan menggunakan metode Historical Simulation, investor dapat menentukan berapa nilai resiko yang dihadapi dengan memegang portofolio tersebut. Kemudian hasil perhitungan dapat menjadi bahan pertimbangan bagi investor untuk mengubah portofolio atau untuk tetap mempertahankannya sesuai dengan tingkat resiko yang diinginkan oleh investor. Dengan menggunakan metode Variance-covariance, selain diketahui kondisi seperti di atas, investor juga dapat mengetahui berapa kontribusi resiko dari setiap aset yang ada dalam portofolio. Dengan menggunakan Value at Risk, investor dapat mengetahui berapa nilai resiko dari portofolionya, opportunity cost yang mungkin timbul dari nilai resiko tersebut/ capital reserve yang disiapkan untuk mengantisipasi kerugian, dan juga untuk mengetahui sifat setiap aset yang ada dalam portofolio. Sehingga apabila investor memutuskan untuk mengubah portofolio yang dimilikinya, investor dapat mengetahui aset mana saja yang baik untuk dipertahankan atau aset mana saja yang sebaiknya diganti. Dan hasil penelitian dapat diketahui bahwa VaR mempunyai kelebihan dan juga kekurangan yang harus diperhatikan dalam pengambilan keputusan. Dengan demikian VaR tidak cukup digunakan sebagai metode tunggal dalam mengontrol resiko atau pengambilan keputusan dalam investasi. Tetap diperlukan metode-metode lain sebagai pelengkap dan pembanding hasil perhitungan VaR untuk pengambilan keputusan yang lebih baik."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 1999
S19216
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oom Komariyah
"Penelitian ini menganalisis risiko harga saham syariah dengan mengukur potensi kerugian maksimal yang akan dialami dalam satu hari, lima hari, dan 20 hari ke depan. Metodologi yang digunakan adalah Value at Risk Variance Covariance model dan Historical Simulation model. Obyek penelitian meliputi 10 saham syariah yang konsisten selama dua tahun tercatat dalam Jakarta Islamic Index. Dalam penelitian ini diasumsikan pasar modal efisien, dengan demikian maka risiko harga dalam penelitian ini menunjukan total risiko dari saham-saham syariah.
Dengan metodologi yang digunakan. dapat diukur potensi kerugian maksimal dari masing-masing saham dan potensi kerugian maksimal dari portofolio 10 saham tersebut pada convident Ievel 95%. Validitas model diuji dengan melakukan back testing dengan Kupiec Test yaitu membandingkan potensi kerugian maksimal hasil perhitungan dengan kerugian yang sebenarnya terjadi. Dari penelitian ini, ditemukan perbedaan hasil pengukuran antara Variance Covariance model dan Historical Simulation model, di mana potensi kerugian yang diukur dengan Variance Covariance model lebih besar dibandingkan dengan potensi kerugian maksimal yang diukur dengan Historical Simulation model. Meskipun demikian, kedua model ini dinyatakan valid untuk mengukur potensi kerugian maksimal dari saham syariah.

This thesis analyzes price risk of sharia stocks by measuring maximum potential loss for the next one, five, and 20 days. The methodologies used are Value at Risk Variance Covariance and Historical Simulation models, The object of research includes 10 stocks listed in Jakarta Islamic Index for the last two years, 2003 and 2004 consequentially. It was assumed that the capital market is efficient so that the price risk reflects total risk of the sharia stocks.
Using the methodologies as described, the maximum potential loss of each stock and its portfolio of 10 stocks can be calculated at 95% confidence level. The models were validated using back testing and Kupiec Test which compare the maximum potential losses with their actual losses. The research found that there was different result of Value at Risk calculated using Variance Covariance method and Historical Simulation methode. The potential loss calculated using Variance Covariance method is bigger than that one calculated using Historical Simulation method. However, these two methods are valid ones to measure maximum potential loss of sharia stocks.
"
Program Pascasarjana Universitas Indonesia, 2005
T15254
UI - Tesis Membership  Universitas Indonesia Library
cover
Sandra Chalik
"Latar belakang penulisan karya akhir ini beranjak dari adanya rekapitalisasi perbankan yang dilakukan pemerintah dan adanya amandemen Basel Capital Accord 1998 pada tahun 1996 yang memasukkan unsur risiko pasar sebagai dasar perhitungan kebutuhan modal minimum. Dengan selesainya rekapitalisasi, portofolio aset yang dimiliki bank yang direkapitalisasi sebagian besar berupa obligasi pemerintah. Mengingat instrumen surat berharga obligasi sangat berkaitan dengan risiko pasar terutama faktor risiko suku bunga, dampaknya apabila faktor risiko pasar tersebut tidak dikelola secara baik akan membawa dampak kerugian yang cukup signifikan bagi kelangsungan operasonal bank.
Permasalahan yang timbul adalah untuk menghitung besamya risiko pasar, selama ini yang dilakukan perbankan masih mertggunakan pendekatan tradisional (non statistik) sehingga masih diragukan keakuratannya. Sedangkan pengukuran risiko dengan pendekatan advance approach (value at risk) masih belum banyak diterapkan oleh bankbank di Indonesia termasuk pada bank tempat kami melakukan penelitian.
Tujuan dari penulisan ini adalah untuk mengetahui bagaimana menghitung besarnya risiko pasar dari portofolio obligasi dalam rangka memenuhi perhitungan kebutuhan modal baru dengan menggunakan teknik-teknik : Perhitungan Value at Risk (VaR) dengan pendekatan variance-covariance dengan estimasi volatilitas menggunakan model Exponentially Weighted Moving Average (EWMA), melakukan uji validasi permodelan dengan teknik Back Testing dan Kupiec Testing serta menghitung capital charge yang hams disediak:an untuk mengcover risiko pasar dari portofolio obligasi yang dimiliki bank.
Sebelum sampai pada perhitungan VaR portofolio obligasi, penetapan spesifikasi model yang digunakan sebagai acuan pengolahan data sebagai berikut :
- Perhitungan V aR porto folio obligasi menggunakan portofolio trading yang dimiliki bank posisi tanggal 30 Juni 2003 sebesat Rp. 1.824.127.000.000
- Pembentukan yield curve menggunakan Bradley Crane Model. Hal ini dilakukan karena tidak tersedianya data harianyield curve.
- Confidence Level (CL) yang digunakan 95% dan 99% (one tailed).
- Holdingperiode ditetapkan selama 1 (satu) hari.
- Forecast yield volatility menggunakan EWMA, dengan penetapan decay factor (A.) sebesar 0.94 dan penetapan nilai decay factor yang besamya ditetapkan berdasarkan perolehan mean squared error (MSE) yang terkecil.
- Melakukan validasi permodelan dengan teknik Back Testing dan Kupiec Testing terhadap data observasi (periode Januari 2003 s.d Juni 2003) dan data out of sample (periode Juli 2003 s.d Agustus 2003).
Dengan spesifikasi model diatas, perhitungan yield curve menggunakan Bradley Crane Model menghasilkan data time series yield curve sebanyak 121 titik untuk data observasi dan sebanyak 43 titik untuk data out of sampel untuk 19 jenis yield to maturity (YTM). Dari data tersebut kemudian dilakukan forecast yield volatility dengan permodelan EWMA.
Hasil perhitungan forecast dengan model EWMA (.A= 0,94) setelah dilakukan back testing untuk data observasi maupun data out of sample menghasilkan sejumlah failure. Sedangkan untuk model EWMA yang nilai decay factornya ditetapkan berdasarkan nilai MSE terkecil, secara keseluruhan dari 19 jenis YTM nilai MSE terkecilnya berada pada nilai A, = 0,99. Penetapan nilai tersebut diperoleh dari hasil forecast yang sabagian besar dipengaruhi oleh variance return pada hari yang bersangkutan dan sebagian kecil dari hasil forecast 1 (satu) hari sebelumnya. Setelah dilakukan proses back testing (data observasi maupun data out of sample), permodelan ini tidak menghasilkan failure.
Dari kedua model EWMA tersebut kemudian dilakukan validasi dengan Kupiec Testing, dan temyata secara statistik proportion of failures yang dihasilkan model dapat diterima (valid), sehinggaforecast yield volatility yang dihasilkan kedua model tersebut baik untuk CL 95% maupun CL 99% dapat digunakan untuk menghitung VaR.
Dalam penelitian ini perhitungan VaR dibedakan antara VaR Diversified yang memperhitungkan risk correlation dan VaR Undiversified yang tidak memperhitungkan risk correlation. Sesuai dengan teori membuktikan bahwa dengan memperhitungkan risk correlation menghasilkan nilai VaR yang lebih rendah karena adanya efek diversifikasi.
Dari hasil perhitungan VaR memperlihatkan bahwa permodelan EWMA (A.=0,94) menghasilkan nilai VaR yang lebih rendah dibanding permodelan EWMA (A=0,99), namun nilainya tidak jauh berbeda. Disamping itu, dari perhitungan VaR juga memperlihatkan bahwa dengan menggunakan CL 99% menghasilkan nilai V aR yang lebih besar dibanding CL 95%. Hal ini disebabkan dengan semaki.n besamya CL, nilai statistik (a.) yang digunakan untuk menghitungyield volatilitas juga semakin besar.
Dengan memperbitungkan risiko pasar kedalam perbitungan CAR maka peroleban CAR posisi 30 Juni 2003 sebesar 12,36% mengalami penurunan antara 0,06% s.d 0,09% untuk setiap permodelan ( dengan asumsi bukan hanya posisi obligasi trading pada tanggal 30 Juni 2003 yang dihitung dalam market risk). Secara ringkas basil perbitungan VaR, capital charge dan CAR sebagai berikut:
Dari hasil penelitian dapat disimpulkan babwa perbitungan VaR portofolio obligasi dengan pendekatan variance covariance yang forecast volatilitasnya menggunakan permodelan EWMA dapat digunakan bank dalam perbitungan risiko pasar. Sedangkan penetapan decay factor dalam perhitungan forecast, untuk kondisi di Indonesia pada saat ini yang paling cocok adalab sebesar 0,99. Hal ini telab dibuktikan bahwa permodelan EWMA (A. = 0.99) tidak menghasilkan failure, walaupun basil perbitungan VaR dan capital charge-nya sedikit lebib besar, namun basil akhir perbitungan CAR-nya tidakjauh berbeda dibanding permodelan EWMA (A.= 0,94)."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2003
T11759
UI - Tesis Membership  Universitas Indonesia Library
cover
Gusti Angrumsari Mustikawati
"Penelitian ini bertujuan untuk menganalisis pengaruh risiko likuiditas dan risiko kredit pada Spread suku bunga dengan menambahkan bank capitalization, bank expenditure, bank size dan business cycle sebagai variabel kontrol dalam penelitian ini. Penelitian ini menggunakan sampel yaitu bank umum konvensional yang terdaftar di Bura Efek Indonesia periode 2012-2016. Pengujian dilakukan dengan menggunakan model regresi data panel dengan metode fixed effect. Hasil penelitian ini menemukan bahwa risiko likuiditas dan risiko kredit berpengaruh signifikan terhadap Spread suku bunga bank pada Bank Umum Konvensional yang terdatar di Bursa Efek Indonesia.

This research is aimed to analyze the impact of liquidity risk and credit risk on Bank Interest Rate Spread by adding bank capitalization, bank expenditure, bank size and business cycle as control variable in this research. The sample of this research are conventional bank listed in Indonesia Stock Exchange during the period of 5 years starting 2012 up to 2016. The tests were conducted with panel data regression model with fixed effect method. The results of thid reasearch found that liquidity risk and credit risk significantly influence the bank interest Spread on Convensional Bank listed in Indonesia stock exchange."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pamuji Gesang Raharjo
"Dalam Peraturan Bank Indonesia nom or 5/8/PBI/2003 tanggal 19 Mei 2003 tentang Penerapan Manajemen Risiko Bagi Bank Umum ditegaskan bahwa tujuan utama dari penerapan manajemen risiko bank adalah menjaga agar aktivitas operasional yang dilakukan bank tidak menimbulkan kerugian yang melebihi kemampuan bank untuk menyerap kerugian tersebut atau bahkan dapat membahayakan kelangsungan usaha bank.
Modal merupakan komponen utama bagi bank dalam di dalam mengantisipasi potensi kerugian yang mungkin terealisasi di dalam menjalankan aktivitas operasional usahanya. Untuk itu salah satu cara dalam mengelola risiko usaha bank adalah dengan mengetahui seberapa besar modal yang hams disediakan oleh bank di dalam mengantisipasi risiko usahanya atau dengan mengetahui seberapa besar total risiko yang dapat diserap dengan modal bank yang tersedia sesuai dengan kondisi, struktur, uk:uran dan kompleksitas usaha masing-masing bank.
Salah satu jenis risiko yang harus dihadapi oleh bank dalam menjalankan aktivitas usahanya adalah risiko pasar (market risk), yaitu risiko yang timbul karena adanya pergerakan variabel pasar (adverse movement) dari portofolio yang dimiliki oleh bank, yang dapat merugikan bank. Variabel pasar dalam hal ini adalah suku bunga (interest rate) dan nilai tukar (foreign exchange).
Sebagaimana diatur Basle Committe on Banking Supervision (BCBS) dalam Amendment to The Capital Accord Incorporate Market Risk tahun 1996 yang juga telah diadopsi oleh Bank Indonesia sebagai regulator perbankan nasional, terdapat dua pendektan altematif yang dapat digunakan dalam menghitung risiko pasar, yaitu pendekatan standar (standardized approach) dan pendekatan internal model (internal model approach).
Perhitungan risiko pasar dilakukan dengan memperhitungkan risiko suku bunga dan risiko nilai tukar. Risiko suku bunga mencakup risiko spesifik (specific risk) dan risiko umum (general market risk). Perhitungan risiko nilai tukar didasarkan pada Posisi Devisa Neto (Net Open Position) yang dimiliki Bank.
Karya akhir ini mengkaji aspek-aspek proses perhitungan risiko pasar dalam mengestimasi besamya modal yang harus disediakan untuk mengantisipasi risiko pasar (market risk capital charge), khususnya yang disebabkan oleh faktor perubahan nilai tukar atas posisi devisa neto PT. Bank lntemasional Indonesia Tbk per tanggal 30 Juni 2003, baik dengan menggunakan pendekatan standar maupun pendekatan internal model dengan menggunakan pendekatan simulasi. data historis (historical simulation approach) dan pendekatan varian kovarian (variance covariance approach) dengan exponentially weighted moving average (EWMA).
Dalam pendekatan standar, pengukuran risiko nilai tukar dilakukan dengan menggunakan pendekatan standar yang telah ditetapkan oleh regulator, dimana besamya Market Risk Capital Charge ditetapkan sebesar 8% dari posisi yang memiliki jumlah yang terbesar antara posisi long dan posisi short. Dengan pendekatan standar, besamya Market Risk Capital Charge adalah sebesar Rp.5.735 juta,-.
Penetapan besamya Value at Risk dengan pendekatan simulasi data historis dilakukan dengan mensimulasi profit and loss atas posisi devisa neto bank berdasarkan return historis nilai tukar masing-masing valuta asing terhadap rupiah selama periode pengamatan, baik dengan 250 data maupun 500 data. Dengan menggunakan 250 data dan tingkat keyakinan (confidence level) 99%, besamya Value at Risk adalah sebesar Rp.888,38 juta,- sehingga besamya Capital at Risk adalah Rp.2.665,14 juta,-. Sedangkan untuk 500 data dan confidence level 99%, basil Value at Risk sebesar Rp.1.269,61 juta,- dan Capital at Risk sebesar Rp.3.808,83 juta,-.
Untuk perhitungan Value at Risk dengan menggunakan pendekatan Variance Covariance - EWMA diawali dengan cara terlebih dahulu menetapkan faktor peluruh yang optimal (optimal decay factor ), dimana dalam penelitian ini besarnya faktor peluruh optimal yang digunakan adalah sebesar 0,96. Dengan menggunakan pendekatan ini, besarnya Value at Risk dengan 250 data dan confidence level 99% adalah sebesar Rp.664,24 juta,- dan Capital at Risk sebesar Rp.L992,72 juta,~, sedangkan untuk 500 data dan confidence level 99% Value at Risk sebesar Rp.559,57 juta,- dan Capital at Risk sebesar Rp.1.678,71 juta,-.
Mengingat risiko pasar yang melekat dalam portofolio yang dimiliki bank tidak hanya terbatas pada risiko nilai.tukar yang melekat pada posisi devisa neto bank, tetapi risiko pasar dan risiko suku bunga yang melekat pada seluruh portofolio yang dimiliki bank, baik berupa instrumen surat hutang ,(debt instruments),forward rate agreement (FRA),foreign exchange, forward, ataupun dalam bentuk instrumen portofolio lainnya, maka pengaruh risiko nilai tukar posisi devisa neto bank terhadap perubahan CAR bank yang sangat kecil, yaitu hanya mengalami penurunan sebesar 0,17% dengan pendekatan standar, 0,08% dengan pendekatan simulasi historis, dan 0,06% dengan pendekatan varian kovarian dari CAR bank per-tanggal 30 Juni 2003 sebesar 25,88% sebelum memasukkan risiko pasar.
Sementara itu berdasarkan hasil stress testing yang dilakukan dengan pendekatan historical scenario dengan tiga skenario, yaitu. skenario terbaik (best scenario), scenario terburuk (worst case scenario), dan skenario yang mungkin (probable case scenario) terdapat potensi terjadinya kerugian sebesar Rp.749 juta dan penurunan modal bank sebesar 0,026% dari posisi modal bank pertanggal 30 Juni 2003 sebesar Rp.2.836.828juta,-. "
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2004
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Riana Dewi
"Perbankan dalam menjalankan fungsinya sebagai financial intermediary selalu berhubungan dengan risiko. Sehingga dalam menjalankan kegiatan operasionalnya, bank harus dapat mengelola risikonya dengan baik. Selain itu, bisnis perbankan yang mengalami perkembangan pesat, juga membuat risiko kegiatan usaha perbankan menjadi semakin kompleks. Oleh karena itu bank dituntut untuk menerapkan manajemen risiko agar memiliki keunggulan kompetitif dalam persaingan bisnis perbankan. Basel Committee on Banking Supervision pada bulan Januari 1996 mengeluarkan Amendment terhadap Basel Capital Accord (BCA) 1988, perbankan diharapkan untuk memasukkan unsur risiko pasar dalam perhitungan Capital Adequacy Ratio (CAR). Bank Indonesia (BI) sebagai regulator perbankan di Indonesia mewajibkan perbankan untuk menerapkan manajemen risiko di bank masing-masing sesuai peraturan yang dikeluarkan oleh Basel Committee on Banking Supervision tersebut.
Salah satu risiko yang dihadapi perbankan adalah risiko pasar. Risiko pasar adalah risiko yang timbul karena adanya pergerakan variable pasar (adverse movement) dari portfolio yang dimiliki oleh bank yang dapat merugikan bank itu sendiri. Risiko pasar yang dibahas dalam karya akhir ini adalah risiko nilai tukar pada portfolio Bank XYZ yang terdiri dari tiga mata uang. Dalam BCA 1996 disebutkan baln-va pengukuran risiko dapat dilakukan dengan standardized approach maupun internal model. Basel mensyaratkan penggunaan Value at Risk (VaR) untuk melakukan penghitungan risiko karena VaR adalah tool yang efektif untuk menggambarkan dan mengkomunikasikan risiko. VaR mengukur maksimum potensi kerugian pada portfolio instrumen keuangan yang diyakini akan terjadi dimasa mendatang dengan tingkat kepercayaan tertentu dan pada holding period tertentu.
Pengukuran risiko nilai tukar dapat dilakukan dengan berbagai pendekatan. Pendekatan yang dipergunakan dalam penelitan ini adalah variance covariance. Sedangkan metode yang dipakai untuk mengbitung volatilitas return mata uang asing adalah deviasi standar normal dan Generalized Autoregressive Conditional Heteroscedasticity (GARCH). Aset yang dipilih adalab tiga jenis mata uang asing pada portfolio Bank XYZ, yaitu Dolar Amerika (USD), Euro (EUR) dan Dolar Singapura (SGD) pada periode 2 Desember 2002 sampai dengan 27 Februari 2004 atau sebanyak 298 titik. Pemiliban atas tiga mata uang tersebut dikarenakan USD, EUR dan SGD merupakan tiga aset terbesar didalam portfolio mata uang asing Bank XYZ.
Untuk melakukan perhitungan VaR perlu dilakukan pengujian data terlebih dahulu, yang meliputi uji stasioneritas dengan ADF Test, uji normalitas dan uji volatilitas data (white heteroscedastic lest). Berdasarkan basil pengujian data diketahui bahwa data return USD dan SGD memiliki volatilitas homoscedaslic, sehingga perbitungan volatilitasnya menggunakan deviasi standar normal. Sedangkan data return EUR yang memiliki volatilitas heteroscedastic. perbitungan volatilitasnya menggunakan GARCH. Setelab didapat basil volatilitas untuk ketiga mata uang tersebut, kemudian dilakukan perhitungan VaR untuk masing-masing mata uang dan portfolio dengan menggunakan confidence level 95% dan holding period I hari.
Dari basil perhitungan VaR. diketahui potensi kerugian maksimum yang dihadapi Bank XYZ pada tanggal 27 Februari 2004 akibat memegang posisi mata uang USD adalah sebesar Rp3.582.910.169; akibat memegang posisi mata uang EUR adalah sebesar Rp19.193.059 dan akibat memegang posisi SGD adalah sebesar Rp2.118.359.962. Sedangkan potensi kerugian maksimum yang dihadapi Bank XYZ pada tanggal 27 Februari 2004 pada portfolio yang terdiri dari USD, EUR dan SGD adalah sebesar Rp5.720.463.191 dengan menggunakan metode undiversified VaR. Sedangkan potensi kerugian maksimum pada portfolionya dengan menggunakan metode diverstfied VaR adalah sebesar Rp5.417.153.223.
Uji validasi model perlu dilakukan untuk mengetahui apakah model volatilitas untuk masing-masing mata uang tersebut valid. Uji validasi yang dilakukan dalam penelitian ini menggunakan Kupiec Test berdasarkan Total Number of Failures (TNoF) maupun Time Until First Failure (TUFF). Dari hasil uji validasi dapat disimpulkan bahwa model volatilitas untuk mata uang USD, EUR dan SGD adalah valid, karena nilai likelihood ratio (LR) yang lebih kecil dari 3,841. Sehingga, nilai VaR yang dihasilkan dapat rnenangkap pergerakan actual loos yang ada dan nilai akumulasi penyimpangan (overshooting) yang terjadi masih berada didalam batas toleransi sehingga dapat memberikan hasil yang cukup akurat."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2005
T15849
UI - Tesis Membership  Universitas Indonesia Library
cover
Ng Vita Ratna Chandra
"Salah satu alat ukur risiko yang memiliki peran penting dalam manajemen portofolio adalah Value-at-Risk VaR . VaR didefinisikan sebagai jumlah kerugian portofolio yang mungkin terjadi dengan tingkat kepercayaan yang tinggi, selama periode waktu tertentu. Secara matematis, VaR adalah persentil dari distribusi loss. Secara umum, return pergerakan harga saham dimodelkan dengan gerak Brown. Sementara itu, distribusi loss dari instrumen keuangan lebih berisfat leptokurtic dari distribusi normal dan cenderung memiliki fat tails . Oleh karena itu, karakteristik dari distribusi loss tersebut tidak memenuhi asumsi distribusi normal. Dengan demikian, proses Variance Gamma VG adalah proses stokastik alternatif untuk mendeskripsikan model dari distribusi return harga saham. Proses VG didefinisikan sebagai gerak Brown dengan perubahan waktu acak mengikuti proses Gamma. Pada penerapannya dalam pasar modal, perhitungan VaR akan dilakukan pada Indeks Harga Saham Gabungan Indonesia IHSG .
One of the measures of risk which has an important role in managing portfolio is Value at Risk VaR . VaR is defined as the amount of possible portfolio losses with a high level of certainty, over a specific time frame. From statistical point of view, VaR is the percentile of the loss distribution. In general, return of the stock prices is modeled with Brownian motion. Meanwhile, return distributions of financial instruments are more leptokurtic than normal distribution and tend to have the fat tails . Therefore, these characteristics of return distributions are countering the normality assumption. Accordingly, a Variance Gamma VG process is an alternative stochastic process to describe the model for the return distribution of stock prices. This process is defined as Brownian motion with random time change following gamma process. On purpose of risk management application, the calculation of VaR will be carried out by using Indonesia Composite Index IDX . "
2016
S66209
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>