Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 148974 dokumen yang sesuai dengan query
cover
Ahmad Fauzi
"ABSTRAK
Perkembangan jumlah pengguna internet di Indonesia mengalami peningkatan dari tahun ke tahun. Perkembangan internet berdampak pula pada munculnya beberapa ecommerce, tidak terkecuali ecommerce yang bergerak dalam jasa pemesanan tiket dan hotel. Selain itu, internet juga mendukung media sosial untuk mengekspresikan opini yang objektif tentang suatu produk/jasa. Media sosial dijadikan sebagai media electrocic word of mouth e-wom oleh pelaku jasa ecommerce. Peneltian ini terkait analisis sentiment, reputasi brand, dan jaringan sosial di Twitter terkait ecommerce yang bergerak pada bidang pemesanan hotel dan tiket. Data yang digunakan di dalam penelitian ini merupakan data yang berhubungan dengan mention @pegi_pegi, @traveloka, dan @tiket yang diambil dari periode 24 September 2016 sampai 21 November 2016. Penelitian ini menggunakan algoritme GaussianNB, MultinomialNB, BernoulliNB, ME, SVM, dan Xgboost pada proses pembuatan model. Pada kasus imbalance data, proses pembuatan model menggunakan SMOTE yang bertujuan menyeimbangkan jumlah kelas pada data yang ada. Akurasi terbaik diperoleh dengan menggunakan algoritme SVM SMOTE sebesar 0.96, presisi sebesar 0.96, recall sebesar 0.96, dan F1-Score sebesar 0.96. Nilai reputasi brand untuk @pegi_pegi sebesar -6, @traveloka sebesar -5, dan @tiket sebesar -2. Akun yang memiliki tingkat pengaruh secara keseluruhan terhadap @pegi_pegi yaitu @calvinjeremy, @traveloka yaitu @banyuwangi_kab, dan @tiket yaitu @IndahJuli.

ABSTRACT
The number of internet users in Indonesia has increased from year to year. Internet development impact on the emergence of e commerces, including in ticket and hotel reservation services. In addition, the internet also supports social media to express their opinions about a product service. Social media is used as a medium electrocic word of mouth e wom by actor rsquo s ecommerce services. This study focuses on sentiment analysis, brand reputation, and social networking on Twitter related to e commerce that focuses on the hotel and ticket reservations. The data used in this research is data related to pegi pegi, traveloka, and tiket taken from the period 24 September 2016 until 21 November 2016. This research uses a GaussianNB algorithm, MultinomialNB, BernoulliNB, ME, SVM, and Xgboost in the modeling process. In case of imbalanced data, process modeling using SMOTE which aims to balance the number of classes on existing data. Best accuracy obtained by using SVM algorithm SMOTE is 0.96, the precision is 0.96, the recall is 0.96, and F1 Score is 0.96. Brand reputation for pegi pegi is 6, traveloka is 5, and tiket is 2. Accounts that have effect on pegi pegi is calvinjeremy, traveloka is banyuwangi kab, and tiket is IndahJuli."
2017
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Bramanthyo Andrian
"Selama pemberlakuan pembatasan kegiatan masyarakat (PPKM) saat pandemi Covid-19, berbagai aktivitas bekerja, belajar, hingga berbelanja lebih banyak dilakukan dengan memanfaatkan teknologi digital dari rumah. Telkomsel Orbit yang merupakan produk layanan internet rumahan hadir untuk mendukung perubahan perilaku pelanggan selama pandemi. Pelanggan Telkomsel Orbit telah meningkat secara eksponensial selama pandemi, akan tetapi pada bulan Oktober 2021 hingga Januari 2022 terjadi penurunan jumlah pertumbuhan pelanggan. Pemasaran di media sosial dengan menggandeng influencer di media sosial dapat dilakukan untuk meningkatkan pertumbuhan pelanggan dan mengatasi masalah tersebut. Penelitian ini dilakukan untuk mendeteksi influencer di media sosial Twitter dan Instagram dengan menggunakan analisis sentimen dan jejaring sosial untuk produk Telkomsel Orbit. Data yang digunakan merupakan tweet, retweet, postingan, dan komentar yang diunggah pada periode 1 Oktober 2021 hingga 31 Maret 2022 terkait produk Telkomsel Orbit, total sebanyak 6,092 tweet dan 8,095 postingan dikumpulkan. Penelitian ini menggunakan algoritma Naïve Bayes (NB), Support Vector Machine (SVM), dan Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) pada proses pembuatan model dalam analisis sentimen berbasis pembelajaran mesin. Selain itu, penelitian ini menggunakan analisis jejaring sosial untuk menentukan aktor utama yang memiliki pengaruh terbesar dengan mengukur empat nilai sentralitas yaitu degree centrality, closeness centrality, betweenness centrality, dan eigenvector centrality. Hasil penelitian menunjukan algoritma SVM memiliki kinerja terbaik dengan rata-rata nilai akurasi sebesar 83.68% diikuti oleh LSTM-RNN sebesar 82.54% dan NB sebesar 75.35%. Selain itu, akun dengan pengaruh terbesar berdasarkan nilai sentralitasnya pada media sosial Twitter adalah denkmit untuk sentimen positif dan myorbitid untuk sentimen negatif, sedangkan pada media sosial Instagram adalah akun tseljabotabekjabar, witelaceh, telkomsel.halo.bjm, dan telkomsel.bojonegoro untuk sentimen positif dan negatif. Hasil dari penelitian ini memberikan kontribusi praktis bagi organisasi dalam melakukan pemasaran di media sosial untuk membangun merek serta menyebarkan informasi dan promosi secara elektronik untuk meningkatkan niat beli suatu produk. Influencer di media sosial berperan penting sebagai pihak yang menyebarkan informasi dan promosi tersebut di media sosial. Selain itu, penelitian ini juga memberikan kontribusi teoritis dalam analisis sentimen berbasis pembelajaran mesin dan analisis jejaring sosial dalam mendeteksi aktor utama di media sosial.

During the implementation of restrictions on community activities (PPKM) in times of the Covid-19 pandemic, various activities such as working, studying, and shopping were mostly carried out by utilizing digital technology from home. Telkomsel Orbit, a home internet service was launched to support changes in customer behavior during the pandemic. Telkomsel Orbit subscribers have increased exponentially during the pandemic, but from October 2021 to January 2022 there was a decrease in the number of subscriber growth. To overcome these problems and increase customer growth, social media marketing and collaboration with influencers on social media could be leveraged. This research was conducted to detect influencers on social media, namely Twitter and Instagram using sentiment analysis and social networks analysis for Telkomsel Orbit products. The data used were tweets, retweets, posts, and comments uploaded in the period between October 1, 2021 and March 31, 2022 related to Telkomsel Orbit products, a total of 6,092 tweets and 8,095 posts were collected. This study used Naïve Bayes (NB), Support Vector Machine (SVM), and Long Short-Term Memory Recurrent Neural Network (LSTM-RNN) algorithm in machine learning-based sentiment analysis. In addition, social networks analysis was also conducted by measuring four centrality metrics, namely degree centrality, closeness centrality, betweenness centrality, and eigenvector centrality. The results of this study showed that SVM algorithm had the best performance with an average accuracy of 83.68% followed by LSTM-RNN 82.54% and NB 75.35%. In addition, the accounts with the greatest influence based on the metric of centrality on Twitter are denkmit for positive sentiment and myorbitid for negative sentiment, while on Instagram social media are tseljabotabekjabar, witelaceh, telkomsel.halo.bjm, and telkomsel.bojonegoro for both of positive and negative sentiment. The results of this study provide a practical contribution to organizations in marketing on social media to build brands and disseminate information and promotions electronically to increase purchase intention of a product. Influencers on social media play an important role as third parties who will disseminate information and promotions on social media. In addition, this research also provides theoretical contributions in machine learning-based sentiment analysis and social network analysis in detecting the main actors in social media."
Jakarta: Fakultas Ilmu Kompter Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dwi Guna Mandhasiya
"Ilmu Data adalah irisan dari matematika dan statistika, komputer, serta keahlian domain. Dalam beberapa tahun terakhir inovasi pada bidang ilmu data berkembang sangat pesat, seperti Artificial Intelligence (AI) yang telah banyak membantu kehidupan manusia. Deep Learning (DL) sebagai bagian dari AI merupakan pengembangan dari salah satu model machine learning yaitu neural network. Dengan banyaknya jumlah lapisan neural network, model deep learning mampu melakukan proses ekstrasi fitur dan klasifikasi dalam satu arsitektur. Model ini telah terbukti mengungguli teknik state-of-the-art machine learning di beberapa bidang seperti pengenalan pola, suara, citra, dan klasifikasi teks. Model deep learning telah melampaui pendekatan berbasis AI dalam berbagai tugas klasifikasi teks, termasuk analisis sentimen. Data teks dapat berasal dari berbagai sumber, seperti sumber dari media sosial. Analisis sentimen atau opinion mining merupakan salah satu studi komputasi yang menganalisis opini dan emosi yang diekspresikan pada teks. Pada penelitian ini analisis peforma machine learning dilakukan pada metode deep learning berbasis representasi data BERT dengan metode CNN dan LSTM serta metode hybrid deep learning CNN-LSTM dan LSTM-CNN. Implementasi model menggunakan data komentar youtube pada video politik dengan topik terkait Pilpres 2024, kemudian evaluasi peforma dilakukan menggunakan confusion metric berupa akurasi, presisi, dan recall.

Data Science is the intersection of mathematics and statistics, computing, and a domain of expertise. In recent years innovation in the field of data science has developed very rapidly, such as Artificial Intelligence (AI) which helped a lot in human life. Deep Learning (DL) as part of AI is the development of one of the machine learning models, namely neural network. With the large number of neural network layers, deep learning models are capable of performing feature extraction and classification processes in a single architecture. This model has proven to outperform state-of-the-art machine learning techniques in areas such as pattern recognition, speech, imagery, and text classification. Deep learning models have gone beyond AI-based approaches in a variety of text classification task, including sentiment analysis. Text data can come from various sources, such as source from social media. Sentiment analysis or opinion mining is a computational study that analyze opinions and emotions expressed in text. In this research, machine learning performance analysis is carried out on a deep learning method based on BERT data representation with the CNN and LSTM and hybrid deep learning CNN-LSTM and LSTM-CNN method. The implementation of the model uses YouTube commentary data on political videos related to the 2024 Indonesia presidential election, then performance analysis is carried out using confusion metrics in the form of accuracy, precision, and recall."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Anton Ade Putra
"Universitas T memiliki rencana (roadmap) untuk mengembangkan berbagai jenis Metaverse di masa depan. Namun, ada kekhawatiran bahwa roadmap yang telah dibuat mungkin tidak sesuai dengan kebutuhan masyarakat. Oleh karena itu, penelitian ini bertujuan untuk menganalisis sentimen dan pemodelan topik tentang Metaverse di media sosial guna memberikan wawasan yang penting bagi roadmap pengembangan Metaverse di Universitas T dengan memperhatikan pendapat dan sentimen masyarakat. Data yang digunakan dalam penelitian ini adalah twit berbahasa Indonesia yang dikumpulkan dari bulan Agustus 2021 hingga April 2023. Untuk analisis, digunakan pustaka LazyPredict yang menghasilkan lima model klasifikasi, yaitu Bernoulli Naive Bayes (BernoulliNB), Nearest Centroid, Calibrated Classifier CV, Logistic Regression, dan Linear Support Vector Classification (LinearSVC). Hasil menunjukkan bahwa model BernoulliNB memiliki performa terbaik dengan nilai rata-rata F1 sebesar 0,788. Selain itu, penelitian ini juga mengidentifikasi topik-topik yang dibahas terkait dengan Metaverse menggunakan pustaka Bertopic. Temuan menunjukkan adanya topik negatif seperti ketidakpastian pengembangan Metaverse, skeptisisme terhadap teknologi baru, keterbatasan infrastruktur internet, kekhawatiran etika dan syariah, ketidakpastian legalitas, kekhawatiran privasi dan keamanan, serta skeptisisme terhadap kesiapan Indonesia dalam membangun Metaverse. Di sisi lain, topik positif meliputi peluncuran Metaverse Jagat Nusantara, potensi kripto dalam konteks Metaverse, perubahan nama Facebook menjadi Meta, konser virtual di Metaverse, kehidupan di dunia Metaverse, pengembangan teknologi Metaverse di dalam negeri, transformasi digital dan inovasi di era Metaverse, penggunaan blockchain, kripto, dan NFT dalam teknologi Metaverse, serta Manasik Haji di Metaverse. Hasil analisis sentimen dan pemodelan ini dapat memberikan wawasan yang berharga bagi Universitas T dalam memahami tren dan pandangan masyarakat terkait Metaverse. Hal ini akan membantu universitas dalam mengevaluasi roadmap Metaverse yang telah dibuat untuk memastikan kesesuaiannya dengan kebutuhan masyarakat.

Universitas T has a roadmap to develop various types of Metaverse in the future. However, there are concerns that the existing roadmap may not align with the needs of society. Therefore, this research aims to analyze the sentiment and topic modeling related to Metaverse on social media to provide valuable insights for the development roadmap of Metaverse at Universitas T, taking into account the opinions and sentiments of the public. The data used in this study are Indonesian tweets collected from August 2021 to April 2023. The LazyPredict library is utilized for analysis, which generates five classification models: Bernoulli Naive Bayes (BernoulliNB), Nearest Centroid, Calibrated Classifier CV, Logistic Regression, and Linear Support Vector Classification (LinearSVC). The results show that the BernoulliNB model performs the best with an F1 score of 0.788. Additionally, this research identifies various topics discussed in relation to Metaverse using Bertopic library. Findings indicate the presence of negative topics such as uncertainty in Metaverse development, skepticism towards new technologies, limitations of internet infrastructure, ethical and Sharia concerns, legal uncertainties, privacy and security concerns, as well as skepticism about Indonesia's readiness in building the Metaverse. On the other hand, positive topics include the launch of Metaverse Jagat Nusantara, the potential of cryptocurrencies in the context of Metaverse, the name change of Facebook to Meta, virtual concerts in the Metaverse, life in the Metaverse world, domestic Metaverse technology development, digital transformation and innovation in the era of Metaverse, the use of blockchain, cryptocurrencies, and NFTs in Metaverse technology, as well as Manasik of Hajj in the Metaverse. The results of sentiment analysis and topic modeling can provide valuable insights for Universitas T to understand the trends and public perspectives regarding Metaverse. This will assist the university in evaluating the existing Metaverse roadmap to ensure its alignment with the needs of society."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dian Isnaeni Nurul Afra
"Komisi Pemberantasan Korupsi (KPK) memiliki kewenangan dalam melakukan pendaftaran dan pemeriksaan terhadap Laporan Harta Kekayaan Penyelenggara Negara (LHKPN). Pelaporan ini berfungsi untuk melakukan pengawasan kejujuran, integritas, dan deteksi kemungkinan adanya tindakan memperkaya diri secara melawan hukum oleh pejabat publik. Publikasi LHKPN sering menimbulkan prasangka negatif dan kecurigaan publik terhadap laporan harta kekayaan pejabat yang mengakibatkan kekhawatiran pejabat untuk melaporkan harta kekayaan secara lengkap dan benar. Persepsi ini menjadi kontraproduktif dengan upaya pencegahan korupsi yang dilakukan oleh KPK apabila tidak direspon dengan cepat. Penelitian ini bertujuan untuk membuat model analisis sentimen dan pemodelan topik yang dapat mengeksplorasi topik dari data media sosial Twitter. Indonesia memiliki jumlah pengguna aktif terbesar keenam di dunia dengan 15,7 juta pengguna yang didominasi kelompok usia 25-34 tahun. Dataset sejumlah 881 data diambil dari Twitter dengan kata kunci "lhkpn" dan "harta kekayaan pejabat" pada periode 1 Agustus sampai 5 November 2021. Penelitian ini mengekplorasi beberapa algoritma klasifikasi, representasi fitur unigram, bigram, dan trigram dengan CountVectorizer dan TFIDF, serta metode oversampling SMOTE. Algoritma klasifikasi dengan performa paling baik pada penelitian ini adalah Multilayer Perceptron dengan fitur unigram CountVectorizer dan metode oversampling dengan accuracy 76,60%, precision 78,19%, recall 76,60%, dan F1 score 76,95%. Hasil pemodelan topik menggunakan Latent Dirichlet Allocation pada kategori ‘negatif’ didominasi ekspresi kekecewaan dan kemarahan masyarakat terhadap meningkatnya harta kekayaan pejabat selama masa pandemi Covid-19 yang berbanding terbalik dengan meningkatnya utang negara dan kesulitan yang dihadapi masyarakat selama pandemi. Topik yang dihasilkan pada kategori ‘positif’ cukup beragam mulai dari aturan untuk melakukan pembuktian terbalik, usulan mengenai kewajiban pelaporan dan sanksi, permintaan untuk membuka laporan kekayaan kepada publik, serta pembahasan mengenai kewajaran penambahan harta kekayaan yang disebabkan oleh meningkatnya nilai aset tidak bergerak.

The Corruption Eradication Commission (KPK) has the authority to register and examine Public Officials Wealth Reports (LHKPN). This report serves to monitor honesty, integrity, and detect the possibility of illegal enrichment by public officials. Publication of LHKPN often creates negative prejudice and public suspicion of official wealth reports, which causes officials to worry about reporting assets completely and correctly. This perception is counterproductive to the efforts to prevent corruption carried out by the KPK if it is not responded to quickly. This study aims to create a sentiment analysis model and topic modelling that can explore topics from Twitter social media data. Indonesia has the sixth-largest number of active users in the world with 15.7 million users, dominated by the 25-34 year age group. A dataset of 881 data was taken from Twitter with the keywords "lhkpn" and "official assets" in the period August 1 to November 5, 2021. This study explores several classification algorithms, representation of unigram, bigram, and trigram features with CountVectorizer and TFIDF, as well as SMOTE oversampling methods. The classification algorithm with the best performance is the Multilayer Perceptron with the unigram CountVectorizer feature and the oversampling method with 76.60% accuracy, 78.19% precision, 76.60% recall, and 76.95% F1 score. The results of topic modelling using Latent Dirichlet Allocation in the 'negative' category are dominated by expressions of public disappointment and anger towards the increase in official wealth during the Covid-19 pandemic which is inversely proportional to the increase in state debt and the difficulties faced by the community during the pandemic. The topics generated in the 'positive' category are quite diverse, starting from the rules for conducting reverse verification, proposals on reporting obligations and sanctions, requests to disclose wealth reports to the public, as well as discussions on the reasonableness of adding to assets caused by the increase in the value of immovable assets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
M. Shofwan Amrullah
"PT Traveloka Indonesia adalah salah satu OTA (Agent) terbesar se-Asia Tenggara, yang mengedepankan kepuasan pelanggan sebagai keunggulan kompetitif perusahaan. Namun saat ini, terdapat penurunan tingkat kepuasan pelanggan, dan juga terjadinya penurunan jumlah pengguna aktif aplikasi. Oleh karena itu, perlu dilakukan langkah-langkah seperti melakukan inovasi atau perbaikan fitur agar dapat meningkatkan kepuasan pelanggan dan juga menaikkan kembali jumlah pengguna aktif aplikasi. Pada aplikasi Android Traveloka, jumlah ulasan mencapai 700 ribu dalam kurun waktu 2 tahun terakhir, di mana platform Android merupakan platform yang mempunyai jumlah pengguna aplikasi Traveloka terbesar dibandingkan platform lainnya. Dengan banyaknya jumlah ulasan tersebut, perusahaan masih memilah-milah ulasan negatif dan positif serta mencari topik-topik yang paling sering dibicarakan secara manual, sehingga membutuhkan waktu yang sangat lama dan cenderung tidak akurat. Hal ini menyebabkan keluhan ataupun ulasan tersebut belum secara efektif dijadikan dasar untuk membuat inovasi baru ataupun untuk memperbaiki fitur yang ada, sehingga belum memberikan kontribusi terhadap proses peningkatan kepuasan pelanggan dan peningkatan jumlah pengguna aktif aplikasi. Oleh karena itu, pada penelitian ini diusulkan suatu model yang dapat mengategorikan sentimen serta melakukan pengelompokan topik-topik yang sering muncul dari seluruh ulasan pelanggan. Algoritma Bayes, Support Vector Machine Logistic Regression digunakan untuk membuat model yang dapat mengklasifikasi sentimen dari tiap ulasan ke dalam kelas positif ataupun kelas negatif. Selain itu, dilakukan proses pemodelan topik pada tiap kelas tersebut menggunakan algoritma Latent Dirichlet Allocation (LDA). Hasil penelitian menunjukkan bahwa algoritma terbaik untuk melakukan klasifikasi adalah SVM, dengan nilai f1-score rata-rata 0.98318, dan jumlah topik yang optimal untuk sentimen positif adalah 16 dan jumlah topik yang optimal untuk sentimen negatif adalah 12. Pada kelas sentimen positif, terdapat topik-topik yang menyinggung kelengkapan fitur serta banyaknya diskon dan promo, sedangkan pada kelas sentimen negatif, terdapat topik yang berhubungan dengan fitur refund dan produk paylater. Dengan diimplementasikannya model tersebut, diharapkan PT Traveloka dapat memilah-milah ulasan ke dalam kelas sentimen positif dan negatif dengan cepat dan akurat, serta dapat dengan cepat mengetahui daftar topik-topik yang paling banyak dibicarakan oleh penggunanya.

PT Traveloka Indonesia is one of the biggest Online Travel Agents in Southeast Asia, which prioritizes customer satisfaction as the company's competitive advantage. However, there is currently a decrease in customer satisfaction scores and numbers of active users. Therefore, it is necessary to take steps such as innovating or improving features to restore customer satisfaction scores and active users. On the Traveloka Android application, the number of reviews reached 700 thousand in the last two years, where the Android platform is the platform that has the most significant number of Traveloka users compared to other platforms. Nonetheless, Traveloka is still sorting through negative and positive reviews manually and manually searching for the most discussed topics, so it takes a long time and tends to be inaccurate. This lengthy process made customer reviews are yet to be effectively used for formulating innovations or finding existing features to improve, so they are yet to help increase customer satisfaction and the number of active users of the application. Therefore, this research proposes a model to categorize sentiments and group topics that often arise from all customer reviews. The Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression algorithm are used to create a model that can classify the sentiment of each review into a positive class or a negative class. In addition, the topic modeling process for each class is carried out using the Latent Dirichlet Allocation (LDA) algorithm. The results show that the best algorithm for classifying is SVM, with an average f1-score of 0.98318, and the optimal number of topics for positive sentiment is 16, and the optimal number of topics for negative sentiment is 12. There are topics about the completeness of features and the number of discounts and promos in the positive sentiment class, while in the negative sentiment class, there are topics related to the refund feature and pay later product. With the implementation of this model, it is hoped that PT Traveloka can sort reviews into positive and negative sentiment classes quickly and accurately and quickly find out the list of topics that users most discuss."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Aqiilah Zalfa Uula
"Lambatnya proses hukum dan ketidaksesuaian sanksi mengakibatkan masyarakat di dunia siber berupaya untuk mencapai keadilan melalui vigilantisme digital, khususnya doxing yang menargetkan pelaku kejahatan. Tulisan ini melakukan analisis sentimen reaksi atas serangan doxing terhadap pelaku dalam kasus MD. Kasus yang dipilih dalam tulisan ini adalah penganiayaan oleh tiga pelaku yaitu MD, AG, dan SL terhadap DO. Data dikumpulkan sejak 20 Februari 2023 hingga 20 Maret 2023 dari Twitter dan dianalisis sentimennya dengan algoritma Naive Bayes. Hasilnya, 57,4% warganet mendukung doxing dan 42,% sisanya menolak doxing. Terdapat dua pembahasan utama dalam sentimen positif yaitu pendalihan dalam dukungan terhadap perilaku doxing dan doxing sebagai bentuk keadilan informal. Di sisi lain, pembahasan dalam sentimen negatif berkisar pada dampak doxing bagi pelaku kejahatan serta penolakan terhadap doxing sebagai upaya melindungi anak.

The slow pace of the legal process and the inappropriateness of sanctions have resulted in cyber communities seeking to achieve justice through digital vigilantism, particularly doxing that targets perpetrators. This paper analyzes the sentiment of reactions to doxing attacks against perpetrators in the MD case. The case chosen in this paper is the mistreatment of DO by three perpetrators, MD, AG, and SL. Data was collected from February 20, 2023 to March 20, 2023 from Twitter and analyzed for sentiment with the Naive Bayes algorithm. As a result, 57.4% of netizens supported doxing and the remaining 42.% rejected doxing. There are two main discussions in the positive sentiment, namely the diversion in support of doxing behavior and doxing as a form of informal justice. On the other hand, the discussion in the negative sentiment revolves around the impact of doxing for criminals and the rejection of doxing as an effort to protect children."
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Novia Agusvina
"Dalam upaya meningkatkan layanan melalui aplikasi Aplikasi Pegadaian Digital, PT Pegadaian terus berupaya untuk melakukan monitoring kepuasan pelanggan dari aplikasi dengan memanfaatkan dashboard Google Play Store. Namun, berdasarkan hasil analisis, terdapat ketidakcocokan antara rating Google Play Store dengan label orientasi sentimen sesungguhnya. Persentasi kesalahan rating yang diambil dari 524 komentar yang telah divalidasi oleh manusia adalah sebesar 34.09%. Artinya, rating pada Google Play Store yang diberikan terhadap 34.09% dari 1.018 review tidak merefleksikan orientasi sentimen yang sesungguhnya. Hal ini menjadi masalah dikarenakan tidak sejalan dengan harapan yang telah disampaikan oleh Kepala Divisi Operasional dan Infrastruktur TI pada sharing and learning yang dilakukan pada tanggal 9 Maret 2021 mengenai peningkatan layanan sentra operasi, di mana seharusnya perusahaan dapat mengetahui kepuasan pelanggan secara akurat. Jika hanya mengandalkan data rating dan ulasan secara mentah dan tanpa analisis maka harapan pelanggan yang sesungguhnya tidak dapat dipenuhi. Sehingga dibutuhkan analisis yang mampu melakukan evaluasi dan menunjukan tingkat kepuasan pelanggan terhadap suatu produk berdasarkan data opini pelanggan secara langsung. Tujuannya adalah untuk mengetahui apakah rating merupakan model klasifikasi orientasi sentimen yang efektif. Selain itu analisis sentimen perlu dilakukan untuk mengetahui sejauh apa model klasifikasi orientasi sentimen yang baik dapat bekerja dan membantu perusahaan untuk mengetahui bagaimana gambaran sentimen positif dan negatif berdasarkan ulasan aplikasi terhadap aplikasi. Pada Penelitian ini, untuk mendapatkan informasi tersebut, dilakukan pendekatan data mining yaitu analisis sentimen dengan metode Maximum Entropy dan Support Vector Machine. Dengan metode ini akan digambarkan ulasan yang termasuk ulasan positif dan negatif. Selanjutnya ulasan dimodelkan dalam bentuk harapan atau persepi dari pengguna yang nantinya dapat digunakan oleh perusahaan sebagai bahan evaluasi pengembangan aplikasi. Hasil permodelan diuji akurasinya dengan menggunakan Confussion Matrix. Dari hasil confusion matrix didapatkan hasil bahwa algoritma Support Vector Machine mendapatkan nilai accuracy, precision, recall dan F-score yaitu accuracy sebesar 87,25%, nilai precision sebesar 97,67%, recall sebesar 77,78%, dan nilai F-Score 86,60%. Dengan penelitian ini, diharapakan membantu PT. Pegadaian dalam menggali harapan pelanggan secara lebih sepesifik dan detail sehingga perusahaan mampu meberikan layanan yang tepat sasaran dan sesuai harapan pelanggan.

To improve services through the Pegadaian Digital Application, PT Pegadaian continues to make efforts to monitor customer satisfaction from the application by utilizing the Google Play Store dashboard. However, based on the results of the analysis, there is a discrepancy between the Google Play Store rating and the actual sentiment orientation label. The percentage of rating errors taken from 524 comments that have been validated by humans is 34.09%. That is, the rating on the Google Play Store given to 34.09% from 1,018 reviews does not reflect the true sentiment orientation. This is a problem because it is not in line with the expectations that have been conveyed by the Head of Operations and IT Infrastructure Division in the sharing and learning conducted on March 9, 2021 regarding improving operations center services, where the company should be able to accurately determine customer satisfaction. If you only rely on raw rating and review data and without analysis, real customer expectations cannot be met. So we need an analysis that is able to evaluate and show the level of customer satisfaction with a product based on customer opinion data directly. The aim is to find out whether the rating is an effective sentiment orientation classification model. Besides that, sentiment analysis needs to be done to find out how far a good sentiment orientation classification model can work and help companies to find out how positive and negative sentiment is based on application reviews of applications. In this study, to obtain this information, a data mining approach was used, namely sentiment analysis using the Maximum Entropy and Support Vector Machine methods. With this method a review will be described including positive and negative reviews. Furthermore, the review is modeled in the form of expectations or perceptions from users which can later be used by the company as material for evaluating application development. Modeling results are tested for accuracy using the Confussion Matrix. From the results of the confusion matrix, the results show that the Support Vector Machine algorithm gets accuracy, precision, recall and F-score, namely accuracy of 87.25%, precision value of 97.67%, recall of 77.78%, and F-Score value 86.60%. With this research, it is hoped that it will help PT. Pegadaian explores customer expectations more specifically and in detail so that the company is able to provide services that are right on target and in line with customer expectations."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ratih Wulandari
"Pemerintah meluncurkan aplikasi pelacakan kontak bernama aplikasi PeduliLindungi untuk menghentikan penyebaran COVID-19. Namun aplikasi ini hanya memiliki 55 juta atau hanya sekitar 20% dari jumlah penduduk Indonesia. Jumlah tersebut dinilai kurang untuk membantu mengatasi COVID-19. Setidaknya diperlukan 60% dari populasi yang menggunakan aplikasi pelacakan kontak sehingga penggunaan aplikasi pelacakan kontak menjadi efektif. Kualitas layanan merupakan faktor pengaruh dominan terhadap niat adopsi pengguna. Rendahnya kualitas layanan suatu aplikasi dapat mempengaruhi keinginan masyarakat untuk menggunakan aplikasi. Penelitian ini bertujuan untuk mengukur kualitas layanan aplikasi pelacakan kontak berdasarkan ulasan pengguna. Penelitian ini menggunakan metode pemodelan topik untuk memperoleh dimensi kualitas layanan serta analisis sentimen untuk mengukur kualitas layanan. Penelitian ini terdiri dari (1) pengumpulan ulasan pengguna aplikasi PeduliLindungi, (2) pra-pemrosesan dari data ulasan yang sudah diekstrak, (3) mengklasifikasikan ulasan ke topik/ dimensi kualitas layanan, (4) mengukur skor kualitas layanan setiap dimensi kualitas layanan, dan (5) mengevaluasi total skor untuk kualitas layanan dari aplikasi PeduliLindungi. Penelitian ini menghasilkan beberapa temuan. Pertama, dari berbagai dimensi kualitas layanan diketahui bahwa dimensi system efficiency, functional benefit, system availability, dan emotional benefit menjadi faktor penting oleh pengguna aplikasi pelacakan kontak. Skor kualitas layanan pada setiap dimensi adalah 66.5% untuk dimensi system efficiency, 54.4% untuk dimensi functional benefit, 51.5% untuk dimensi system availability, dan 46.2% untuk dimensi emotional benefit. Skor kualitas layanan aplikasi PeduliLindungi secara keseluruhan adalah 40.6%.

The government has launched a contact tracing application called the PeduliLindungi application to stop the spread of COVID-19. However, this application only has 55 million or only about 20% of Indonesia's population. This amount is considered insufficient to help overcome COVID-19. At least 60% of the population is required to use contact tracing applications for the use of contact tracing applications to be effective. Service quality is the dominant influence factor on user adoption intention. Service quality level can affect people's desire to use the application. This study aims to measure the service quality of contact tracing applications based on user reviews. This study uses the topic modeling method to obtain service quality dimensions and sentiment analysis to measure service quality. This research consists of (1) collecting user reviews of PeduliLindungi, (2) pre-processing the extracted review data, (3) classifying reviews into topics/service quality dimensions, (4) measuring service quality scores for each service quality dimension, and (5) evaluate the total score for the service quality of the PeduliLindungi application. This research produced several findings. First, from various service quality dimensions, it is known that the service quality dimensions of a contact tracing application are system efficiency, functional benefit, system availability, and emotional benefit are important factors for contact tracing application users. The service quality score on each dimension is 66.5% for the system efficiency dimension, 54.4% for the functional benefit dimension, 51.5% for the system availability dimension, and 46.2% for the emotional benefit dimension. The overall PeduliLindungi service quality score is 40.6%."
2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Mardeni Mihardi
"Kampanye merupakan salah satu momen dalam pemilu yang paling ditunggu. Masa kampanye adalah saat dimana calon kepala daerah memperkenalkan diri kepada masyarakat luas, terutama visi dan misinya. Untuk mengetahui pandangan masyarakat terhadap suatu kampanye politik digunakan analisis sentimen menggunakan data Twitter. Penelitian ini melakukan analisis sentimen terhadap kampanye politik pasangan calon gubernur dan wakil gubernur DKI Jakarta tahun 2017. Program yang digunakan untuk klasifikasi yaitu sentiStrength dengan menggunakan pendekatan berbasis leksikon. Dataset yang digunakan untuk klasifikasi yaitu kicauan tweet pengguna yang ditujukan untuk to membalas kicauan akun ofisial calon gubernur dan wakil gubernur, dan kicauan yang menyebut mention akun ofisial calon gubernur dan wakil gubernur pada saat masa kampanye putaran 1 dari tanggal 28 Oktober 2016 sampai 11 Februari 2017 dengan total kicauan yang terkumpul sebanyak 158.517 kicauan dan putaran 2 dari tanggal 7 Maret sampai 15 April 2017 dengan total kicauan yang terkumpul sebanyak 117.074 kicauan. Pengklasifikasian terbagi menjadi 3 kelas yaitu positif, negatif, dan netral. Hasil penelitian menunjukkan bahwa secara umum sentimen positif mendominasi sentimen negatif untuk tiap-tiap calon gubernur dan wakil gubernur, dan hasil perolehan sentimen positif di media sosial Twitter dengan hasil perolehan suara yang didapat oleh pasangan calon gubernur dan wakil gubernur DKI Jakarta 2017 baik pada putaran 1 maupun 2 memiliki urutan yang sama.

The campaign is one of the most awaited moments in elections. The campaign period is the time when the candidate head of the region introduces himself to the public, especially his vision and mission. To find out the public view of a political campaign used sentiment analysis using Twitter data. This study analyzes the sentiment toward the political campaign of candidate pair of governor and vice governor of DKI Jakarta in 2017. The program used for classification is sentiStrength by using lexicon based approach. The dataset used for classification is the tweets of users intended to respond to the tweets of the official accounts of candidates for governors and vice governors, and tweets that mention the official accounts of candidates for governor and vice governor during the campaign period round 1 from October 28, 2016 to February 11, 2017 with a total of tweets gathered as many as 158,517 tweets, and round 2 from March 7 to April 15, 2017 with a total tweet gathered 117,074 tweets. Classification is divided into 3 classes of positive, negative, and neutral. The results showed that in general the positive sentiment dominates the negative sentiment for each candidate of governor and vice governor, and the result of positive sentiments in social media Twitter with the result of vote earned by the couple of candidates for governor and vice governor of DKI Jakarta 2017 both on round 1 and 2 have the same order.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>