Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 62275 dokumen yang sesuai dengan query
cover
Fakhrian Fitrianto
"Energi listrik merupakan energi yang sudah tidak bisa dipisahkan dari kehidupan manusia. Kebutuhan energi listrik akan terus meningkat seiring dengan perkembangan zaman. Dalam pembangkitan energi listrik dibutuhkan pengonversian energi lain menjadi energi listrik dimana untuk membangkitkan energi listrik dibutuhkan sumber daya alam seperti batu bara. Batu bara dipilih karena selain harganya murah, pembangkitnya juga memiliki efisiensi yang cukup tinggi namun berdampak pada lingkungan. Selain itu seiring dengan pertumbuhan beban, biaya produksi tenaga listrik juga semakin meningkat. Oleh sebab itu, dibutuhkan optimasi biaya operasi pembangkit agar didapatkan pembebanan yang optimal sehingga biaya yang dikeluarkan seefisien mungkin dan harga listrik menjadi tidak terlalu mahal. Pada perencanaan pembebanan sebenarnya, biaya operasi pembangkit dalam satu hari yang dikeluarkan sebesar Rp 18.384.345.566 dengan biaya bahan bakar sebesar Rp 561,118/kWH. Sedangkan dengan optimasi biaya operasi pembangkit dengan menggunakan metode lagrange, didapat biaya operasi pembangkit dalam satu hari sebesar Rp 18.350.617.781 dan biaya bahan bakar sebesar Rp 560,068/kWH. Dengan melakukan optimasi biaya operasi pembangkit dengan metode lagrange, pengeluaran biaya operasi pembangkit dapat dihemat sebesar Rp 33.727.785 dan biaya bahan bakar sebesar Rp 1,05/kWH.

Nowadays, Electricity is one of the most important energy for human being which cannot be separated from the human life. The needs of electricity is increasing by the time goes. Another form of energy should be converted to produce the electricity and a coal is needed to produce the electricity as the fuel for the power plant. Coal is chosen as the fuel because it has low cost and high eficiency but has a bad impact for the environment. As the load grows, both the cost of electricity production and needs of the natural resoursces is increasing too. Though, the optimization of power plant production cost is needed to obtain optimal loading each power plant and get the efficient cost so the elctricity prices turn to be lower than before. In the real plan of power plant loading, the production cost is Rp Rp 18.384.345.566 a day and the fuel cost is Rp 561,118 kWH. On the other hand, the production cost with lagrange method opimization is Rp 18.350.617.781 a day and the fuel cost is Rp 560,068 kWH. Using the optimalization of electricity production cost with lagrange method Rp 33.727.785 has saved from the real plan planning and also save Rp 1,05 kWH in the fuel cost."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alimah Sekarningrum
"Indonesia diyakini memiliki potensi energi panas bumi sebesar 23.965 MW (Megawatt) atau setara dengan 20,28% dari potensi panas bumi dunia. Kondisi pemanfaatan panas bumi di Indonesia saat ini yaitu kapasitas terpasang sebesar 2.130,7 MW. Pengembangan panas bumi di Indonesia menemui banyak tantangan, dibuktikan salah satunya oleh pemanfaatannya yang rendah walaupun memiliki cadangan terbesar kedua di dunia. Pengembang panas bumi percaya bahwa salah satu faktor utama yang menghambat pengembangan panas bumi adalah tingginya risiko hulu. Salah satu faktor yang menghambat pengembangan panas bumi yaitu yang akan dibahas dalam penelitian ini adalah keterbatasan akses pada data pengeboran panas bumi menjadi kendala utama bagi setiap engineer atau peneliti pengeboran di Indonesia yang berupaya mencari cara untuk mengoptimalkan biaya pengeboran panas bumi. Dahulu biaya sumur di Indonesia jarang dipublikasikan, sehingga sulit dan tidak cukup data untuk dapat mengevaluasi biaya sumur hingga keyakinan statistik yang masuk akal. Perusahaan pengembang panas bumi di Indonesia tidak termotivasi untuk berbagi lesson learned dan best practice dari proyek pengeboran panas bumi ke publik, mengakibatkan kurangnya pengembangan terhadap aset proses organisasi yang dijadikan benchmarking untuk mengoptimalkan biaya eksplorasi. Dengan melakukan penilaian terhadap tingkat kematangan aset proses organisasi manajemen biaya proyek eksplorasi panas bumi diharapkan dapat mengetahui sudah sampai di mana tingkat kematangan saat ini dan diharapkan dapat memberikan strategi untuk dapat mengembangkan aset proses organisasi dalam manajemen biaya agar meningkatkan kesuksesan proyek. Penelitian ini dilakukan sebagai wujud pengembangan aset proses organisasi terhadap perencanaan biaya yang dapat dijadikan sebagai lesson learned berupa prosedur untuk perencanaan biaya proyek pengeboran industri panas bumi di Indonesia dan selanjutnya untuk meningkatkan keberhasilan pembangunan pembangkit listrik tenaga panas bumi di Indonesia.

Indonesia is believed to have geothermal energy potential of 23,965 MW (Megawatt) or equivalent to 20.28% of the world's geothermal potential. The current condition of geothermal utilization in Indonesia, in the form of installed capacity of geothermal power plants, is about 2,130.7 MW. Utilization of geothermal development in Indonesia faces many challenges, one of which is proven by its low utilization despite having the second largest reserves in the world. Geothermal developers believe that one of the main factors hindering geothermal development is the high upstream risk. One of the factors that hinder geothermal development, which will be discussed in this study, is the limited access to geothermal drilling data, which is a major obstacle for every drilling engineer or researcher in Indonesia who is trying to find ways to optimize geothermal drilling costs. In the past, well costs in Indonesia were rarely published, making it difficult and insufficient data to evaluate well costs to reasonable statistical confidence. Furthermore, geothermal development companies in Indonesia are not motivated to share lessons learned and best practices from geothermal drilling projects to the public, resulting in a lack of development of organizational process assets that are used as benchmarks to optimize exploration costs. By assessing the maturity level of project cost management's organizational process assets in geothermal exploration projects, it is expected to find out the current maturity level and provide a strategy to develop organizational process assets in project cost management in order to increase project success. This research was conducted as a form of developing organizational process assets towards cost planning that can be used as lessons learned in the form of procedures for cost planning for geothermal drilling projects in Indonesia and further to increase the success of geothermal power plant development in Indonesia."
Jakarta: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mujammil Asdhiyoga Rahmanta
"Penelitian kajian optimasi & analisis ekonomi distribusi Liquified Natural Gas (LNG) terhadap penurunan biaya bahan bakar penyediaan tenaga listrik pada pembangkit listrik di Wilayah Nusa Tenggara bertujuan untuk menentukan alokasi & fasilitas yang harus dibangun dalam distribusi LNG, serta mendapatkan kajian analisis keekonomian berdasarkan parameter kelayakan finansial distribusi LNG ke pembangkit listrik di wilayah Nusa Tenggara. Penelitian dilakukan dengan optimasi rute distribusi LNG dengan fungsi tujuan meminimalkan biaya transportasi. Optimasi rute distribusi dilakukan dengan pendekatan greedy algorithm dan integer linear programming. Rute distribusi hasil optimasi digunakan untuk menghitung besarnya Capital Expenditure (Capex) & Operasional Expenditure (Opex) terminal distribusi LNG. Kajian ekonomi distribusi LNG dilakukan dengan menganalisis besarnya nilai internal rate of return (IRR), payback period (PP) dan Net Present Value (NPV). Pembangkit listrik yang dikaji adalah Pusat Listrik Mesin Gas (PLTMG) yang mana mampu menggunakan bahan bakar jenis high speed diesel (HSD) dan gas alam. Terdapat enam PLTMG di Wilayah Nusa Tenggara antara lain Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, & Kupang Peaker. Penelitian ini menggunakan basis data operasional tahun 2020 dimana harga rata-rata HSD di Wilayah Nusa Tenggara sebesar 5.620 Rp/liter dengan nilai kurs tengah Bank Indonesia sebesar 14.105 US$/Rp. Dari analisis dan pembahasan dihasilkan bahwa kebutuhan LNG per tahun untuk enam PLTMG dengan total kapasitas daya mampu netto 346 MW, capacity factor (CF) 44%, dan equivalent availability factor (EAF) 95% di Wilayah Nusa Tenggara adalah 449.497,43 m3/tahun. Optimasi distribusi LNG menghasilkan kombinasi rute Bontang, Bima, Sumbawa, Lombok Peaker, Bontang yang dilayani kapal ukuran 7.500 m3 dan Bontang, Rangko, Maumere, Kupang Peaker, Bontang yang dilayani kapal ukuran 2.500 m3 dengan total biaya transportasi 19.666.335 US$/tahun. Diperlukan 6 terminal LNG untuk memenuhi kebutuhan gas yaitu Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, dan Kupang Peaker dengan total biaya Capex 151.941.482,95 US$. Menggunakan skema modal disetor (equity) 40%, pinjaman (debt) Bank 60% dengan bunga 10% cicilan selama 20 tahun, nilai Capex sebesar 151.941.482,95 US$, Opex sebesar 27.263.408,67 US$, maka sekurang-kurangnya diperlukan margin harga penjualan sebesar 5,5 US$/MMBTU sehingga distribusi LNG tersebut layak secara finansial dengan payback period selama 10 tahun, IRR 8,35%, dan nilai NPV postif sebesar 244.712.335,64 US$ pada tahun ke-20. Berdasarkan data tahun 2020, nilai biaya pokok penyediaan (BPP) tenaga listrik PLTMG di Wilayah Nusa Tenggara dengan LNG margin harga 5,5 US$/MMBTU adalah 8,42 Cent US$/kWh, lebih rendah 13% dibandingkan dengan BPP dengan HSD sebesar 9,69 Cent US$/kWh.

Research on optimization studies & economic analysis of Liquified Natural Gas (LNG) distribution towards reducing fuel costs of energy at power plants in the Nusa Tenggara Region aims to determine the allocation & facilities that must be built in LNG distribution, as well as obtain an economic analysis study based on financial feasibility parameters distribution of LNG to power plants in the Nusa Tenggara region. The research was conducted by optimizing the LNG distribution route with the objective function of minimizing transportation costs. Distribution route optimization is done by using the greedy algorithm approach and integer linear programming. The distribution route of the optimization results is used to calculate the amount of Capital Expenditure (Capex) & Operational Expenditure (Opex) of the LNG distribution terminal. The study of the economics of LNG distribution was carried out by analyzing the internal rate of return (IRR), payback period (PP), and Net Present Value (NPV). The power plant studied is the Gas Engine Power Plants (GEPP) which is capable of using high-speed diesel (HSD) and natural gas fuels. There are six GEPPs in the Nusa Tenggara Region, including Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, & Kupang Peaker. This study uses an operational database in 2020 where the average price of HSD in the Nusa Tenggara Region is 5,620 Rp/liter with the Bank Indonesia middle rate of 14,105 US$/Rp. From the analysis and discussion, it is found that the LNG demand per year for six PLTMGs with a total net capacity of 346 MW, capacity factor (CF) 44%, and equivalent availability factor (EAF) 95% in the Nusa Tenggara Region is 449,497.43 m3/year. Optimization of LNG distribution resulted in a combination of routes Bontang, Bima, Sumbawa, Lombok Peaker, Bontang served by 7,500 m3 ships and Bontang, Rangko, Maumere, Kupang Peaker, Bontang served by 2,500 m3 ships with a total transportation cost of 19,666,335 US$/year. 6 LNG terminals are needed to meet gas needs, namely Bima, Sumbawa, Lombok Peaker, Rangko, Maumere, and Kupang Peaker with a total Capex cost of 151,941,482.95 US$. Using a 40% paid-in capital (equity) scheme, 60% Bank loan (debt) with 10% interest in installments for 20 years, Capex value of 151,941,482.95 US$, Opex of 27,263,408.67 US$, then at least a minimum sales price margin of 5.5 US$/MMBTU is required so that the LNG distribution is financially feasible with a payback period of 10 years, an IRR of 8.35%, and a positive NPV value of 244,712,335.64 US$ in the 20th year. Based on 2020 data, the cost of energy (COE) of GEPPs in the Nusa Tenggara Region with an LNG price margin of 5.5 US$/MMBTU is 8.42 Cent US$/kWh, 13% lower than COE with an HSD of 9.69 Cents US$/kWh."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Pina Hariyanti
"Pada operasi sistem pembangkitan tenaga listrik, biaya bahan bakar merupakan biaya yang terbesar dari biaya operasi secara keseluruhan [1]. Besarnya biaya bahan bakar yang diperlukan unit pembangkit termal sebagai masukan terhadap keluaran daya pembangkit, sehingga besarnya masukan secara optimal akan mengahasilkan keluaran yang optimal. Penjadwalan operasional pembangkit dan pembebanan ekonomis merupakan langkah operasi ekonomis pada pengoperasian PLTU Labuan dan PLTGU Cilegon pada Subsistem II Wilayah Banten untuk memperoleh estimasi biaya operasi optimal. Penjadwalan yang dilakukan dengan menentukan unit pembangkit yang hidup on dan mati off yang disebut dengan komitmen unit unit commitment. Setelah melakukan penjadwalan operasional unit pembangkit, maka dapat dilakukan pembebanan ekonomis untuk membagi daya yang dapat dibangkitan oleh masing-masing pembangkit untuk memenuhi estimasi permintaan beban pada Subsistem II Wilayah Banten. Estimasi biaya operasi optimal yang didapatkan yaitu sebesar Rp 376.030.525.349 sehingga dapat menghemat 29.5 hingga 32.5 dari total biaya operasi yang dibutuhkan selama sebulan periode Januari 2018 dengan biaya bahan bakar sebesar Rp 604,17/kWh. Selain itu, untuk memenuhi estimasi beban puncak sebesar 952 MW dibutuhkan biaya operasi optimal sebesar Rp 733.762.467 dan biaya operasi optimal beban minimum sebesar 629 MW adalah Rp 378.422.653.

In the operation of power generation systems, fuel cost represents the largest of operating cost in the operation of power generation system 1 . The fuel cost of the thermal power plants as input to the generator power and output of the generator is the power generated by each generator, so that optimal input determination optimal output. Operational economic of PLTU Labuan and PLTGU Cilegon in subsystem II Banten can be subdivided into two parts. Those are economic dispatch and unit commitment. The unit commitment problem is to find the minimum cost option to schedule generator startups and shutdowns while meeting forecasted loads, satisfying all plant and system constraints such as generating capacity constraints and power balance constraints. Furthermore, economic dispatch is the method of allocating the load demand between the available power plant units and finds the minimum operating cost of generation for each hour. Estimated optimal operating cost is Rp 376.030.525.349 so that it can save 29.5 to 32.5 of total operating costs required during the month of January 2018 with fuel costs of Rp 604.17 kWh. In addition, estimated operating optimal cost for peak load of 952 MW is Rp 733.762.467 and the optimal operating cost for the minimum load of 629 MW is Rp 378.422.653."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
R. David Pandu Herdiansyah
"Dengan adanya green house gas yang meningkat akibat adanya jumlah emisi carbon yang semakin banyak, menyebabkan temperature di bumi semakin meningkat, yang mana hal tersebut bisa mengakibatkan perubahan iklim yang memicu terjadinya bencana alam. PLTU yang mempunyai koefisien emisi paling tinggi dibanding pembangkit lainnya dan juga merupakan penopang baseload dan mempunyai presentase hingga 51% dalam bauran energi di Indonesia. Dalam menurunkan/mengurangi emisi karbon bisa dilakukan dengan mengganti PLTU dengan teknologi pembangkit lainnya yang memiliki emisi lebih rendah. Selain di tinjau dari sisi penurunan emisi CO2 ketika PLTU digantikan dengan teknologi pembangkit lainnya, juga akan di bandingkan masing – masing LCOE (Levelized Cost of Electricity) dan production cost electricity/tahun, sehingga bisa diketahui komposisi yang optimal untuk jenis teknologi yang dibandingkan. Teknologi pembangkit lainnya yang akan di bandingkan adalah Hydropower, Geothermal, Simple cycle gas turbine, Combine cycle gas turbine, Gas Engine, PV+Battery dan Carbon Capture and Storage (CCS). Berdasarkan data dan hasil optimasi pada studi ini, maka skema yang paling optimal adalah skema 2, dikarenakan mempunyai total biaya pokok pembangkitan paling rendah sebesar USD 15.26 billion dan memenuhi target penurunan emisi CO2 dari semula ketika semua PLTU sebesar 221.95 juta ton CO2 menjadi 21.86 juta ton, sehingga penurunan CO2 sebesar 200.09 juta ton, adapun komposisi pembangkitnya adalah Hydropower (54MWx36 unit), Geothermal (50MWx16unit), Gas Engine (162 MWx 6unit), PLTU+CCS (169 MWx 187 unit).Dengan komposisi bervariasi ini memungkin untuk mendapatkan kehandalan system yang lebih, karena berasal dari berbagai sumber energi.

The increase in greenhouse gas due to the increasing number of carbon emissions causes the temperature on the earth to increase, which can lead to climate change that triggers natural disasters. PLTU has the highest emission coefficient compared to other plants, is also a baseload supporter, and has a percentage of up to 51% in the energy mix in Indonesia. Reducing/reducing carbon emissions can be done by replacing PLTU with other generating technologies with lower emissions. In addition to being reviewed in terms of reducing CO2 emissions when PLTU is replaced with other generating technologies, each LCOE (Levelized Cost of Electricity) and production cost of electricity/year will be compared so that the optimal composition can be determined for the type of technology being compared. Other electricity generating technologies that will be compared are Hydropower, Geothermal, Simple cycle gas turbine, Combine cycle gas turbine, Gas Engine, PV+Battery and Carbon Capture and Storage (CCS). Based on the data and optimization results in this study, the most optimal scheme is scheme 2, because it has the lowest total cost of generating the lowest amount of USD 15.26 billion and fulfils the CO2 emission reduction target from when all PLTUs amounted to 221.95 million tons of CO2 to 21.86 million tons, resulting in a CO2 reduction of 200.09 million tons, while the composition of the generators is Hydropower (54MWx36 units), Geothermal (50MWx16units), Gas Engines (162 MWx 6units), PLTU+CCS (169 MWx 187 units). More system, because it comes from various energy sources."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Toni Sukmawan
"ABSTRAK
Pengoperasian pembangkit tidak hanya didasarkan pada kemampuan pembangkit untuk memenuhi kebutuhan daya sistem secara cepat dan handal, namun juga dibutuhkan pengoperasian yang efisien untuk meminimalisir biaya operasional dan menurunkan penggunaan bahan bakar fosil. Berbagai cara dilakukan untuk meningkatkan efisiensi pengoperasian pembangkit salah satunya dengan menggunakan metode merit order. Metode ini dilakukan dengan memperhitungkan karakteristik efisiensi pada beban tertentu, karkteristik biaya operasi pada beban tertentu, karakteristik operasi jenis pembangkit tertentu dan biaya start up pembangkit. Setelah dilakukan perhitungan pengambilan sampel biaya pengoperasian pembangkit pada beberapa titik pembebanan, dilakukan tabulasi merit order dari pembebanan rendah hingga pembebanan tinggi. Tabulasi ini berguna untuk melihat perbandingan pada titik pembebanan yang sama namun pembangkit yang beroperasi berbeda dengan memilih pembangkit yang beroperasi dengan biaya termurah. Hasil dari penelitian ini adalah mendapatkan nilai biaya pengoperasian termurah pada pembebanan tertentu dengan menentukan pembangkit mana yang harus beroperasi. Penelitian ini dapat menghasilkan suatu metode pemilihan pengoperasian pembangkit dan dapat ditawarkan kepada pengatur beban sebagai alternatif pengoperasian yang paling efisien. Hal ini berguna untuk mempermudah dan mempercepat pengambilan keputusan secara tepat unit pembangkit mana yang menjadi prioritas saat kebutuhan beban tertentu. Jika pemilihan pengoperasian pembangkit dilakukan secara tepat dan cepat, maka efisiensi pengoperasian sistem tenaga listrik akan menjadi lebih murah dan efisien.

ABSTRACT
Operational of powerplant is not only base on ability of the powerplant to supply power load to electricity system as soon as possible and reliability. But also need operational power plant more efficien to reduce cost of the fossil fuel. So many Alternative to improve efficiency thermal of the power plant and one of the way to solve the problem is use merit order methode. This methode is doing by calculation caracteristic of the power plant in partial load operation and cost of the Start Up unit. After have the calculation sample of incremental cost in partial load operation, and get the tabulation of merit order from low level load until peak load. This table is using for analysis in the same load of Muara karang but in different powerplant unit and different each unit load and choose which one of the operation give us better cost. Result of the thesis is to get better cost operation powerplant in partial load with choose which one of the unit must be run and must be stop. This thesis can give us the methode operation of the unit power plant and can be offering to dispatcher as an alternative operation more efficient. This methode is usefull to have a decision as soon as possible which one of the unit must be operated and have high priority when dispatcher need. If the best cost choosing powerplant unit to operated geting faster, so the more efficiency operational of the electricity system is cheapest"
2016
T48271
UI - Tesis Membership  Universitas Indonesia Library
cover
Stephanie Rizka Permata
"Pembangkit Listrik Tenaga Gas dan Uap (PLTGU) merupakan salah satu pembangkit termal yang bekerja berdasarkan kombinasi dari Pembangkit Listrik Tenaga Gas (PLTG) dan Pembangkit Listrik Tenaga Uap (PLTU). PLTGU menerapkan sistem pengoperasian combine cycle, dimana sisa gas panas hasil pembuangan dari turbin gas digunakan untuk memutar turbin uap. Hal ini dilakukan dalam rangka meningkatkan efisiensi. Permasalahan yang terjadi pada PLTGU tidak hanya terbatas pada efisiensi saja, melainkan juga pada pola operasi yang efektif dan biaya pembangkitan yang efisien (optimal). Oleh karena itu, diperlukan suatu usaha pengevaluasian PLTGU, yaitu dengan cara Metode Lagrange Multipliers.
Studi kasus pada skripsi ini dilakukan pada PLTGU PT. Cikarang Listrindo. Dari hasil perencanaan pola operasi dan perhitungan menggunakan Metode Lagrange Multipliers diperoleh bahwa pola operasi yang paling optimal untuk PLTGU PT. Cikarang Listrindo adalah Blok I CC 3-3-1 GTG Gas Frame 6, Blok II CC 3-3-1 GTG Gas Frame 6, dan Blok III CC 2-2-1 GTG Gas Frame 9 dengan biaya pembangkitan Rp. 349,69 juta untuk total beban 300 MW, Rp. 380,2 juta untuk total beban 350 MW, Rp. 413,94 juta pada saat total beban 400 MW, dan Rp. 448,28 juta ketika total beban 440 MW. Selain itu, diperoleh pula bahwa penggunaan bahan bakar solar dapat membuat biaya pembangkitan menjadi dua kali lipat atau 200 persen daripada biaya pembangkitan dengan menggunakan bahan bakar gas.

Combined Cycle Power Plant (CCPP) is one of the thermal power plant that operates based on a combination of gas power plant and steam power plant. CCPP applies combined cycle operating system, where the residual heat of exhaust gas from the gas turbine is used to turn a steam turbine. This is done in order to improve efficiency. Problems that occur in the CCPP is not limited to efficiency, but also to the pattern of effective operation and efficient (optimal) generation cost. It is, therefore, requires the effort to evaluation of CCPP, ie by Lagrange Multipliers Method.
Case studies in this thesis is done on CCPP owned by PT. Cikarang Listrindo. The results obtained from this study are that the most optimal operating patterns for CCPP PT. Cikarang Listrindo is 3-3-1 CC Block I Frame 6 GTG Gas, 3-3-1 CC Block II Frame 6 Gas GTG, and Block III CC 2-2-1 Frame 9 Gas GTG with generation costs of Rp. 349.69 million for a total load of 300 MW, Rp. 380.2 million for a total load of 350 MW, Rp. 413.94 million in total current load of 400 MW, and Rp. 448.28 million when the total load is 440 MW. It is obtained also that the use of diesel fuel can make the cost of power generation will be twofold or 200 percents of the cost of power generation using fuel gas.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46793
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edwin Aldrin
"ABSTRAK
LNG skala kecil merupakan salah satu alternatif pasokan gas untuk pembangkit listrik yang lokasinya tersebar di kepulauan seperti Bangka, Belitung dan Pontianak. LNG yang ditransportasikan dari terminal likuifaksi LNG harus dioptimasi pola pendistribusiannya ke masing-masing lokasi pembangkit. Optimasi dilakukan terhadap faktor biaya yang meliputi biaya pembelian gas, biaya penyewaan kapal, biaya pengiriman gas dan biaya operasional terminal penerima dan regasifikasi LNG. Sebuah model matematis dibuat berdasarkan variabel keputusan dan variabel tak terkendali yang didefinisikan dari parameter-paramater yang mempengaruhi hasil pola logistik. Secara garis besar skenario operasi untuk pendistribusian LNG yang digunakan adalah pengiriman tanpa hub (milk run dan point to point) dan pengiriman dengan hub. Hasil perbandingan menunjukan bahwa biaya logistik skema milk run lebih murah dibandingkan dengan skema yang lain yaitu sebesar 0,85 USD/MMBTU untuk pembangkit listrik MPP Belitung, 0,84 USD/MMBTU untuk MPP Bangka, 0,83 USD/MMBTU untuk MPP Kalbar dan 0,83 USD/MMBTU untuk Peaker Pontianak.

ABSTRACT
Small Scale LNG is an alternative as gas supply to Gas Power Plants that scattered in several islands like Bangka, Belitung and Pontianak. LNG transportation from Liquifaction Terminal to each power plant have to be optimized. Optimation is conducted to achieve cost efficiency. Several Costs that affect the logistic scheme include LNG FOB price, Ship chartered cost, gas transporting cost and operational cost at regasification terminal. A Mathematical model is constructed based decision variable and uncontrollable variable which defined from any parameters that has implication to logistic scheme. Overall operation scenario built on this study are comprised of transporting with hub and transporting without hub (milk run and point to point). The results shown show that logistics costs must run cheaper compared to the others, namely 0.85 USD / MMBTU for MPP Belitung power plant, 0.84 USD / MMBTU for MPP Bangka, 0.83 USD / MMBTU for MPP West Kalimantan and 0 , 83 USD / MMBTU for Pontianak Peakers.
"
2019
T52639
UI - Tesis Membership  Universitas Indonesia Library
cover
Yusro Hakimah
"Biaya bahan bakar pada umumnya adalah biaya paling besar yaitu kira-kira 60 persen dari biaya operasi keseluruhan. Pengendalian biaya operasi ini merupakan hal yang pokok karena optimalisasi biaya bahan bakar dapat menghemat biaya operasi serta dapat menghasilkan keuntungan yang maksimal bagi perusahaan.Konfigurasi pembebanan atau penjadwalan pembangkit yang berbeda dapat mengakibatkan biaya operasi pembangkit yang berbeda pula, tergantung dari karakteristik masing-masing unit pembangkit yang dioperasikan. Penjadwalan pembangkit sangat penting bagi pengoperasian suatu pembangkit, terutama pembangkit termal, karena berkaitan langsung dengan biaya bahan bakar.Adapun kombinasi kerja unit pembangkit yang paling ekonomis adalah untuk keluaran daya dengan beban sebesar 40 MW, maka biaya bahan bakar paling ekonomis 801,76 dolar perjam.Untuk keluaran daya dengan beban sebesar 50 MW maka biaya bahan bakar paling ekonomis 1124,38 dolar perjam. Untuk keluaran daya sebesar 60 MW maka biaya bahan bakar paling ekonomis 1314,22 dolar perjam. Untuk keluaran daya sebear 80 MW maka biaya bahan bakar paling ekonomis 1617,5 dolar perjam."
Palembang: Fakultas teknik Universitas tridinanti palembang, 2016
600 JDTEK 4:1 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Priambudi Pujihatma
"Bahan bakar adalah salah satu komponen terbesar dalam biaya penyediaan tenaga listrik. Oleh karena itu, diperlukan mekanisme optimasi yang bertujuan untuk menghasilkan daya sesuai permintaan dengan konsumsi biaya bahan bakar minimum. Di sisi lain, penyediaan tenaga listrik kini jarus memperhatikan faktor keberlanjutan / sustainability, diantaranya faktor jumlah emisi yang dihasilkan operasi pembangkitan. Tujuan tesis adalah untuk membuat program optimasi pembagian beban antar jenis pembangkit yang dapat memenuhi persamaan tujuan tertentu. Program optimasi dapat merespon perubahan siklus beban harian, sehingga hasil optimasi dapat langsung diaplikasikan dalam operasi harian pembangkit.
Terdapat beberapa jenis fungsi tujuan dalam program optimasi, diantaranya : biaya bahan bakar total minimum, optimasi emisi total minimum dan optimasi total biaya bahan bakar dan eksternalitas emisi. Khusus untuk optimasi biaya bahan bakar minimum, diuji dua bentuk kurva, yaitu kurva polynomial convex dan kurva non convex. Fungsi pembatas optimasi adalah tegangan, kapasitas pembangkit dan kesetimbangan daya dalam sistem tenaga listrik IEEE 14 Bus. Tiga jenis pembangkit disimulasikan, yaitu Pembangkit Listrik Tenaga Gas Siklus Terbuka, Pembangkit Listrik Tenaga Gas Siklus Kombinasi (CCGT) dan Pembangkit Listrik Tenaga Uap berbahan bakar Batubara.
Metode yang dipilih adalah algoritma evolusi diferensial. Untuk menguji validitas, digunakan algoritma pemrograman linier sebagai pembanding. Hasil simulasi menunjukkan bahwa algoritma evolusi diferensial bekerja dengan handal untuk jenis persamaan tujuan convex dan non convex. Evolusi diferensial juga dapat merespon perubahan jenis persamaan tujuan. Untuk optimisasi biaya bahan bakar minimum, evolusi diferensial memprioritaskan pembangkit listrik berbahan bakar batubara, yang memiliki harga bahan bakar $/MW terendah. Sedangkan untuk optimasi emisi minimum, evolusi diferensial akan memprioritaskan pembangkit listrik berbahan bakar gas, yang memiliki nilai emisi tCO2/MW yang terendah.

Fuel is one of the main components of electricity cost. An optimization method is needed to produce required power with minimum fuel cost. On the other side, powerplants are required to pay adequate attention to sustainability nowadays. One of the major sustainability factor is the emission product which result from fuel combustion. The purpose of this thesis is to develop an optimization program related to generator dispatch with several objective functions. Optimization program could respond to daily load variation, hence its output could be directly applied in daily generator dispatch operation.
Several objective functions being tested in this paper are : minimum fuel cost, minimum emission, minimum fuel & emission externality cost. For fuel cost, two types of objective functions are being tested : polynomial convex and non convex functions. Constraints for optimization program consist of : system voltage, powerplant real and reactive capacity and loadflow balance of IEEE 14 Bus power system. Three types of generation unit are being tested : Open Cycle Gas Turbine, Combined Cycle Gas Turbine, and Coal Fueled Steam Turbine.
The chosen method is differential evolution. To test the validity of this algorithm, linear programming is used as benchmark. Simulation result shows that differential evolution is a robust algorithm for convex and non convex objective functions. Differential evolution could also respond well to different types of objective functions. For fuel cost constrained optimization, differential evolution will prioritize the coal fueled generation unit, which has lowest fuel cost $/MW. On the other hand, for emission constrained optimization, differential evolution will prioritize gas fueled generation unit, which has lowest emission value tCO2/MW compared to other units.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41147
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>