Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 97552 dokumen yang sesuai dengan query
cover
Ida Ratna Nila
"ABSTRAK
Sistem prediksi kedalaman memar dan distribusi kandungan SSC pada jambu berdasarkan waktu penyimpanan dengan menggunakan sistem citra Vis-NIR pada panjang gelombang 400-1000 nm dapat dikembangkan menjadi sistem non-destruktif. Sehingga informasi tambahan yang di dapat tidak hanya dapat membedakan daerah memar namun juga memberikan informasi kedalaman memar dan kandungan SSC pada daerah memar. Sistem yang diusulkan dievaluasi dengan menggunakan 160 sampel jambu dibagi dalam dua kelompok set data, yaitu set data training n = 140 dan set data testing n = 20 . Proses memar pada jambu dilakukan secara manual dengan dijatuhkan bola besi dari ketinggian 200 dan 500 mm dan kemudian sampel dianalisis dengan rentang waktu 0,3,4,5, dan 6 hari setelah dimemarkan. Sistem citra Vis-NIR yang digunakan terdiri dari satu set perangkat, diantaranya workbench, slider, dua sumber cahaya halogen 150W dan kamera citra Vis-NIR yang terhubung ke PC melalui Camera Link. Perangkat lunak sistem terdiri dari pengukuran profil gambar reflektansi, ekstraksi fitur, pemilihan fitur pada data spektral dan spasial, model prediksi kandungan SSC, dan model prediksi kedalaman memar. Model Partial Least Square Regression PLSR digunakan untuk mengembangkan model prediksi pada data spektral semua panjang gelombang. Model PLSR digunakan untuk mendapatkan prediksi nilai kandungan SSC dan kedalaman memar. Hasil yang diprediksi dibandingkan dengan hasil pengukuran uji lab kandungan SSC yang diperoleh dengan menggunakan refraktometer dan kedalaman memar yang diperoleh dengan menggunakan sifat measurement instrumental. Dari hasil kinerja model prediksi didapatkan nilai RMSE pada data testing 0,06 dan koefisien korelasi dari data testing 0,99.Kata kunci : Memar; PLSR; citra Vis-NIR.

ABSTRACT
Abstract The prediction system of bruising depth in guava based on storage operation using Visual NIR image in the ranges 400 ndash 1000 nm ranges, which could be developed a nondestructive system to predicted the bruise depth of guava. The additional information gained not only the position of the bruised area but also provides depth bruising information. And then, the objective of the research was to develop a nondestructive method for predicting the profile mapping of soluble solid content on bruises guava. The soluble solids content SSC as the parameter fruits was determined and correlated with the bruises area.The proposed system was evaluated using 160 samples of guava were divided in two groups. All of the samples are prepared for the training n 140 and testing n 20 set data. Bruises were manually induced and samples were analyzed 0, 3rd, 4th, 5th and 6th days after bruising. Individual guavas were then subjected to impact test by a steel ball at one of the levels height of impact test, i.e.,200mm and 500mm. The system used consists of a set such as workbench, controllable slider, two halogen light sources and a Visual NIR imaging camera that is connected to PC via Camera Link. The software of system consists of reflectance image profile measurement, feature extraction, feature selection on spectral and spatial data, soluble solids content prediction model, and bruise depth prediction model. The partial least squares regression PLSR models was used to develop prediction models on full wavelengths spectral data. The prediction model is used to get value prediction of soluble solids content and bruising depth. The predicted results compared with the reference measurement result of soluble solids content which obtained using a refractometer and bruising depth which obtained using an optical properties. The full spectral data and parameter fruits were analyzed using the Partial Least Square PLS to obtained prediction model of bruising depth and SSC of bruises guava. The peformance of prediction model provided value of the root mean square error of testing set of 0.06 and the correlation coefficient of a testing set of 0.99. The results of our work indicate that there is a feasibility of implementing hyperspectral imaging technique on the nondestructive bruise depth prediction of guava and suitable in an industrial sorting system for fruit quality, which would be useful for postharvest handling of fruit. Keywords kelebaman bruising , non destructive, Profitability, hyperspectral image Vis NIR."
2017
T49754
UI - Tesis Membership  Universitas Indonesia Library
cover
Dina Akmalia
"ABSTRAK
Kadar gula total merupakan salah satu parameter internal untuk kualitas buah. Pada penelitian ini diperkenalkan sistem pengukuran kadar gula total tanpa merusak buah menggunakan hyperspectral imaging dalam rentang panjang gelombang V-NIR 400-1000 nm . Komponen utama pada sistem hyperspectral imaging adalah lampu halogen dan kamera hiperspektral. Hyperspectral imaging bekerja dengan memanfaatkan data reflektansi dari permukaan buah pisang dan menggunakan Partial Least Square Regression PLSR dan Support Vector Machine SVM untuk analisis spektral dan spasial yang menghasilkan model yang dapat memprediksi nilai kadar gula total dan klasifikasi tingkat kematangan pada buah pisang. Nilai kadar gula total pada buah pisang sebagai data pembanding diuji menggunakan refraktometer. Pada penelitian ini digunakan 15 pisang raja dan 15 pisang ambon yang terdiri dari 5 pisang mentah, 5 pisang matang dan 5 pisang terlalu matang. Dari PLSR dan SVM model didapatkan nilai RMSE 0,4091 , koefisien korelasi R2 sebesar 0,997 dan kesalahan klasifikasi 0 untuk pisang raja dan didapatkan nilai RMSE 0,4802 , koefisien korelasi R2 sebesar 0,996 dan kesalahan klasifikasi 0 untuk pisang ambon. Hasil penelitian menunjukkan bahwa sistem hyperspectral imaging dapat digunakan sebagai instrumen untuk pengukuran kadar gula total pada buah pisang.

ABSTRACT
Sugar content is one of the internal parameters for fruit quality. In this study, a non destruction measurement system for sugar content is introduced using hyperspectral imaging in the V NIR spectral range 400 1000 nm . The main components of the hyperspectral imaging system are halogen lamps and hyperspectral cameras. Hyperspectral imaging works by utilizing reflectance data from banana surfaces and using Partial Least Square Regression PLSR and Support Vector Machine SVM for spectral and spatial analysis that create a model that can predict total sugar content and banana maturity stage classification. The value of sugar content in banana was tested using refractometer as comparison data. In this study used 15 raja bananas and 15 ambon bananas consisting of 5 raw bananas, 5 ripe bananas and 5 overripe bananas. PLSR and SVM model provided RMSE of 0,4091 , correlation coefficient R2 of 0,997 and classification error of 0 for raja bananas and provided RMSE of 0,4802 , correlation coefficient R2 of 0,996 and classification error of 0 for ambon bananas. The results showed that the hyperspectral imaging system can be used as an instrument for measuring total sugar content in bananas."
2017
S67036
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Sriyono Putro
"Pada saat ini, pengukuran sifat dan karakteristik madu yang menjadi dasar untuk penentuan kualitas madu dilakukan dengan metode berbasis laboratorium yang umumnya memiliki sifat merusak, memerlukan waktu yang lama, satu alat untuk satu pengukuran dan memerlukan penanganan yang khusus. Penelitian ini ditujukan untuk membuat suatu sistem pengukuran berbasis citra hiperspektral yang memiliki sifat tidak merusak, cepat, mudah, dan terintegrasi untuk memprediksi beberapa sifat madu antara lain massa jenis, TSS Total Soluble Solid), konduktivitas listrik, dan pH madu, serta mampu untuk melakukan pengenalan produsen madu. Sistem pengukuran yang dikembangkan menggunakan kamera hiperspektral yang mampu mendeteksi gelombang elektromagnetik pada panjang gelombang 400-1000 nm.
Sistem pengolahan citra meliputi pengkoreksi citra, pemilihan area pengukuran, pengekstraksi ciri, pereduksi data, pemodelan pengenalan produsen madu dan pemodelan prediksi sifat madu. Algoritma pereduksi data yang digunakan meliputi PCA (Principal Component Analysis), PLS (Partial Least Square), dan ICA (Independent Componen Analysis). Algoritma pengenalan produsen madu meliputi algoritma DT (Decission Tree), kNN (k Nearest Neighbor), SVM (Support Vector Machine).
Algoritma pemodelan prediksi sifat madu meliputi RT (Regression Tree), SVR (Support Vector Regression), dan GPR (Gaussian Process Regression). Sampel madu yang digunakan untuk menguji kinerja sistem yang dikembangkan terdiri atas 140 sampel yang didapatkan dari 3 produsen madu, dimana masing masing produsen mempunyai 9 sumber flora yang berbeda beda. Evaluasi terhadap kinerja sistem dilakukan dengan analisis nilai akurasi pada klasifikasi, serta koefisien determinasi (R2) dan RMSE (Root Mean Square Error) pada regresi.
Hasil yang diperoleh menunjukan algoritma PLS-kNN sebagai algoritma terbaik untuk klasifikasi produsen madu dengan tingkat akurasi 79,3%. Algoritma PCA-GPR merupakan algoritma terbaik untuk prediksi nilai massa jenis, TSS, dan konduktivitas listrik dengan nilai R2 sebesar 0,889, 0,801, 0,875 dan RMSE dengan nilai 0,012, 1,738, 0,074. Algoritma terbaik untuk prediksi nilai pH madu adalah PLS-GPR dengan nilai R2 sebesar 0,904 dan RMSE 0,107. Secara umum, sistem yang dikembangkan telah berhasil melakukan pengenalan produsen madu dan memprediksi sifat madu dengan baik.

Currently, the measurement of the honey properties which is the basis for determining the quality of honey is carried out by laboratory-based methods which generally have destructive properties, require a long time, one tool for one measurement and require special handling. This research is intended to develop measurement system based on hyperspectral imaging which has non-destructive, fast, easy and integrated properties that are able to measure some of the properties of honey including density, TSS, electric conductivity, and pH. , and are able to recognize the producers of honey.
The measurement system uses a hyperspectral camera over 400-1000 nm wavelength signal. This system use image processing technique including image correction, image segmentation, image extraction, classification algorithm to recognize the producers of honey, and regression algorithm to predict honey properties value. The data reduction algorithm used are PCA (Principal Component Analysis), PLS (Partial Least Square), and ICA (Independent Componen Analysis).
The classification algorithm used are DT (Decission Tree), kNN (k Nearest Neighbor), SVM (Support Vector Machine. The regression algorithm used are RT (Regression Tree), SVR (Support Vector Regression), and GPR (Gaussian Process Regression). The honey samples used to test the performance of the system consisted of 140 samples obtained from 3 honey producers, where each producer had 9 different sources of honey floral origin. Evaluation of the system was done by analyzing the value of accuracy on classification, as well as the coefficient of determination (R2) and RMSE (Root Mean Square Error) in the regression.
The results obtained show the PLS-kNN algorithm as the best algorithm to recognize the honey producers with 79.3% accurac. The PCA-GPR algorithm is the best algorithm for predicting density, TSS, and electrical conductivity with R2 values of 0.889, 0.801, 0.875 and RMSE values of 0.012, 1.738, 0.074. The best algorithm for predicting the pH value of honey was PLS-GPR with R2 value of 0.904 and RMSE 0.107.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T51840
UI - Tesis Membership  Universitas Indonesia Library
cover
Ali Muhammad Ali
"Citra hiperspektral memiliki informasi dalam rentang spektrum yang luas melebihi rentang spektrum yang ada pada citra RGB sebagai citra yang umum digunakan sehari-hari saat ini. Informasi tersebut dapat dimanfaatkan dalam berbagai macam bidang; salah satunya adalah pengukuran kadar tertentu dalam suatu objek. Namun, kamera hiperspektral sebagai alat akuisisi citra memiliki kekurangan yaitu harganya yang mahal, tidak mudah dioperasikan, ukuran hasil citra yang besar, serta memerlukan teknik dan perangkat khusus saat mengakuisisi citra. Hal tersebut berbeda dengan kamera RGB yang memiliki harga yang jauh lebih murah, hasil citra berukuran kecil, serta mudah dioperasikan. Penelitian ini melakukan implementasi sistem rekonstruksi citra hiperspektral dari citra RGB berbasis convolutional neural network ResNet pada sistem prediksi kadar fenolik daun bisbul. Terdapat proses rekonstruksi citra hiperspektral dengan target jumlah bands sebanyak 224 pada rentang panjang gelombang 400 sampai 1000 nm. Penelitian ini menggunakan algoritma model ResNet untuk model rekonstruksi citra, serta algoritma model XGBoost untuk model prediksi kadar. Performa model yang dihasilkan dalam penelitian ini adalah RMSE sebesar 0,1129 dan MRAE sebesar 0,3187 untuk model rekonstruksi citra, serta RMSE sebesar 0,5798 dan MRAE sebesar 0,1431 untuk model prediksi kadar. Citra hiperspektral hasil rekonstruksi mampu menghasilkan pola spectral signature yang serupa dengan citra hiperspektral asli.

Hyperspectral images have much information within their large spectrum area; larger than RGB images which are used daily nowadays. The information can be used in many applications; one of them is content measurement of an object. However, hyperspectral cameras as an image acquisition instrument have disadvantages, such as high cost, not easy to operate, large image results, and require additional equipment in its image acquisition. This is different from RGB cameras which have cheaper price, smaller in image size, and easier to operate. This study implemented a hyperspectral image reconstruction system from RGB images based on the ResNet convolutional neural network on the velvet apple leaf’s phenolic content prediction system. This study reconstructs hyperspectral images with a total target of 224 bands in the wavelength range of 400 to 1000 nm. This study uses the ResNet model algorithm for the image reconstruction model, and the XGBoost model algorithm for the content prediction. The performance of the model produced in this study is RMSE of 0.1129 and MRAE of 0.3187 for the image reconstruction model, as well as RMSE of 0.5798 and MRAE of 0.1431 for the content prediction model. The reconstructed hyperspectral image can produce the same spectral signature pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yossie Cahya Permata
"ABSTRAK
Nilai reflektansi pada panjang gelombang tertentu pada buah pisang dengan rentang yang besar digunakan untuk mengembangkan sebuah sistem pengujian kadar karotenoid menggunakan teknik hiperspektral imaging. Sistem pengujian ini terdiri dari satu set sistem pengukuran, sumber cahaya berupa lampu halogen, dan kamera hiperspektral yang terhubung dengan Personal Computer PC menggunakan penghubung Camera Link. Sampel terdiri dari tiga tingkat kematangan yaitu mentah, matang, dan sangat matang. Sistem pengujian menggunakan Partial least square regression PLSR model untuk memperoleh hasil kuantitatif. PLSR model pada panjang gelombang penuh digunakan untuk membuat sebuah model yang menghubungkan antara data spektral hiperspektral dan kadar karotenoid berdasarkan metode pengujian spektroskopi. Hasil yang diperoleh pada seluruh sampel memiliki koefisien korelasi prediksi melebihi 0,9 pada seluruh sampel dan nilai RMSE 6,81x10-7 pada pisang raja dan 1,03x10-5 pada pisang ambon. Hasil PLSR menunjukan bahwa sistem pengujian dapat digunakan untuk menguji kadar karotenoid.

ABSTRACT
Fruit reflectance spectra of banana with a wide range of carotenoids content have been studied to develop testing system using hyperspectral imaging technique. The testing system consist of a set of measuring instruments, halogen light source, and hyperspectral camera that connected to PC using Camera Link. A sample set combining three stages of maturity i.e. immature, mature, and very mature. The testing system uses Partial least square regression PLSR models to get its quantitative results. PLSR models on full spectra was used to create a model that computing relationship between HSI spectra and carotenoids contents based on spectroscopy methods. The profile map of carotenoids was distributed by applying the PLS models on pixels within the hyperspectral image, which obtained acceptable results for all sample sets with correlation coefficient of prediction over 0.9 and RMSE value 6,81x10 7 on Musa textilia and 1,03x10 5 on Musa paradisiaca. The results show that the proposed system can be used to testing of carotenoids content."
2017
S67009
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Nuraini
"Sistem klasifikasi citra lidah telah banyak digunakan dalam kepentingan medis dan diagnosis kesehatan. Penelitian ini berfokus pada peningkatan peforma akurasi klasifikasi pada sistem prediksi perokok berdasarkan analisis letak persebaran Smoker Melanosis pada citra lidah. Teknik diagonis lidah yang dibangun adalah metode yang non-invasif serta berbasis pencitraan hiperspektral (HSI). Berbagai pendekatan dan arsitektur Deep Learning  telah diusulkan untuk mengatasi analisis data HSI dan telah mencapai akurasi klasifikasi yang relatif tinggi. Pada penelitian ini, arisitektur Convolutional Neural Network (CNN) dipakai dalam konfigurasi spektral-spasial yang terutama digunakan dengan tujuan ekstraksi fitur dan klasifikasi. Peneliti membuat beberapa arsitektur CNN untuk melakukan beberapa pengujian. Peneliti mengklasifikasikannya sebagai Single CNN dan Hybrid CNN. Pada algoritma Single CNN ada 2 arsitektur yang dibuat  yaitu CNN-Autoencoder dan CNN-Alexnet. Pada algoritma Hybrid CNN ada 2 arsitektur yang dibuat yaitu Proposed Hybrid CNN dengan satu cabang dan Hybrid CNN Resnet18 dengan 8 cabang. Peneliti menguji dampak kernel pada setiap subjek segmentasi yang berbeda dan terlihat bahwa akurasi klasifikasi tertinggi setiap subjek bervariasi terhadap ukuran kernel. Oleh karena itu, model Hybrid-CNN ini diusulkan untuk dapat membuat arsitektur hibrida dan skala konvolusi hibrida. Pada model Proposed Hybrid CNN yang diusulkan, akurasi pada subjek Lateral A bisa mencapai 90,6%, Lateral B mencapai 86,5%, dan Persepsi Dokter mencapai 99,2%. Pada model Hybrid CNN-Resnet18 yang diusulkan, Lateral A bisa mencapai 89,4%, Lateral B mencaapai 84,6%, dan Persepsi Dokter mencapai 97,4%. Secara umum hasil akurasi model yang diusulkan berhasil mencapai peforma yang lebih baik.

The tongue image classification system has been widely used in medical interests and health diagnosis. This research emphasizes on improving the performance of classification accuracy in the Smoker prediction system based on the location analysis of the SmokerMelanosis distribution on the tongue image. The tongue diagonalization technique developed is a non-invasive method based on hyperspectral imaging (HSI). Various considerations and architecture In-depth learning have been proposed to overcome the analysis of HSI data and has obtained relatively high classification completion. In this study, the Convolutional Neural Network (CNN) architecture is used in the spectral-spatial configuration used for feature extraction and classification. CNN to do some testing. Researchers classified it as Single CNN and Hybrid CNN. In the Single CNN algorithm, there are 2 architectures created, namely CNN-Autoencoder and CNNAlexnet. In the Hybrid CNN algorithm, there are 2 architectures created, namely Proposed Hybrid CNN with one branch and Hybrid CNN Resnet18 with 8 branches. Learn more about the kernel in each different subject segmentation and look at the kernel classification. Therefore, the Hybrid-CNN model is proposed to be able to make hybrid architecture and hybrid convolution scale. In the approved Proposed Hybrid CNN model, approved on the subject of Lateral A can reach 90,60%, Lateral B reaches 86,5%, and Doctor Perception reaches 99,2%. In the CNN-Resnet18 Hybrid model obtained, Lateral A can reach 89,4%, Lateral B reaches 84,6%, and Doctor Perception reaches 97,4%. In general, the results of the completion of the approved model have achieved better performance. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syifa Dzulhijjah Juansyah
"ABSTRAK
Sekarang ini, tingkat kematangan buah pisang Musa sp diklasifikasikan secara manual berdasarkan warna kulitnya. Pada penelitian ini, akan diperkenakan sistem otomatis tingkat kematangan buah pisang menggunakan teknologi hyperspectral. Sistem perangkat keras yang digunakan terdiri dari satu set alat pengukuran, sumber cahaya halogen dan kamera hyperspectral yang terhubung ke PC melalui Camera Link. Perangkat lunak sistem terdiri dari pengukuran hasil reflektansi citra, ekstraksi ciri, dan algoritma klasifikasi. Citra reflektansi permukaan pisang dihitung berdasarkan citra yang didapat, white reference dan dark reference. Feature extraction ekstraksi ciri didapatkan menggunakan principal component analysis pada semua range panjang gelombang hyperspectral. Dengan demikian, tingkat kematangan diklasifikasikan menggunakan artificial neural network menjadi 3 kelas yaitu, mentah, matang dan sangat matang. Sampel yang digunakan ialah 15 pisang ambon Musa acuminate colla dan 15 pisang raja Musa textilla yang masing-masing berisi 5 sampel pada setiap tingkat kematangan. Hasil penelitian ini menunjukan bahwa sistem yang diusulkan dapat mengkalsifikasikan tingkat kematangan buah pisang cukup akurat.

ABSTRACT
Nowadays, the maturity of banana is classified manually based on the surface color of banana. In this study, an automatic system was introduce using hyperspectral technology system. The hardware of system consist of a set of measuring system, light source and hyperspectral camera that connect to PC via Camera Link. The software of system consists of reflectance image profile measurement, feature extraction and classification algorithm. The reflectance image profile of the banana surface was calculated based on current image, white and dark image reference. The feature sets were computed using a principal component analysis on full wavelength range of HIS spectra. Thus, the maturity stage of banana was classified artificial neural network into 3 classes i.e. immature, mature and very mature. The samples used were 15 sampel Musa acuminate collaa and 15 sampel Moses textilla which is consist 5 samples for each aturity stage.The results show that the proposed system can classify the banana maturity stage perfectly. "
2017
S67132
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shinta Aprilia Safitri
"Pola konsumsi pangan masyarakat Indonesia saat ini telah beralih dari sekedar pemenuhan kebutuhan dasar menjadi pola konsumsi makanan sehat yang disebut sebagai pangan fungsional. Beras berpigmen masuk kedalam jenis makanan fungsional karena mengandung banyak antioksidan yang berasal dari antosianin. Namun beras berpigmen dinilai mudah apek jika disimpan terlalu lama. Teknologi iradiasi dapat digunakan untuk mengawetkan makanan secara aman dan efektif sehingga dapat memperpanjang umur simpannya. Penyinaran radiasi gamma dengan dosis tertentu dapat menyebabkan terjadinya perubahan komposisi nutrisi yang terkandung dalam beras. Sehingga perlu dilakukan pengukuran kandungan nutrisi beras berpigmen pasca iradiasi untuk menjamin kesesuaian gizi pada beras tersebut.  Penelitian ini dilakukan untuk membangun sistem multi-output yang mampu memprediksi kadar total antosianin dan kadar air pada beras berpigmen teriradiasi berbasis pencitraan hiperspektral. Evaluasi model dilakukan dengan menghitung nilai root mean square error (RMSE) dan koefisien determinasi R2 dari model multi-output dan membandingkan performanya dengan model single-output. Hasilnya didapatkan bahwa model multi-output Spectral Xception mampu melakukan prediksi yang sangat baik dengan performa pengujian kadar total antosianin menghasilkan nilai RMSE sebesar 0,9105 dan R2 sebesar 0,9963, serta pengujian kadar air bernilai RMSE sebesar 0,2529 dan R2 sebesar 0,9784. Selain itu, model multi-output secara umum lebih efisien dibandingkan single-output karena proses pelatihannya 48% lebih cepat. Pada penelitian ini juga dilakukan evaluasi performa model multi-output Spectral Xception saat menggunakan dataset yang berbeda.

Food consumption pattern of the Indonesian people has shifted from merely fulfilling basic needs to becoming a healthy food consumption which is referred to functional food. Pigmented rice can be categorized as a type of functional food because it contains antioxidants derived from anthocyanins. However, pigmented rice is considered to be easily stale when stored for too long. Irradiation technology can be used to safely and effectively preserve food to extend its shelf life. Utilization of gamma radiation irradiation with certain doses can cause changes in the composition of the nutrients contained therein. So it is necessary to measure the nutritional content of post-irradiation pigmented rice to ensure the nutritional suitability of the rice. This research was conducted to develop a multi-output system to predict total anthocyanin content and water content in irradiated pigmented rice based on hyperspectral imaging. Model evaluation has been carried out by calculating the root mean square error (RMSE) value and the coefficient of determination R2 of the multi-output model and comparing its performance with the single-output model. The results showed that the multi-output spectral xception model was able to make very good predictions with test performance at total anthocyanin content RMSE values of 0.9105 and R2 0.9963, as well as testing for water content RMSE values of 0.2529 and R2 0.9784. In addition, the multi-output model is generally more efficient than the single-output model because the training process is 48% faster. This research also evaluates the performance of the multi-output spectral exception model when using different datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Reza Sugiarto
"ABSTRACT
Visualisasi pertulangan daun telah banyak dilakukan menggunakan citra RGB dan metode pengolahan yang digunakan adalah pemrosesan morfologi. Hasil dari metode tersebut dapat menampilkan pola pertulangan daun atau venasi dengan baik, namun sangat terbatas pada resolusi kamera yang digunakan serta keterbatasan informasi spektral citra daunyan dihasilkan. Pada penelitian kali visualisasi venasi berhasil dilakukan dengan citra hyperspectral dengan panjang gelombang 400-1000nm. Sistem visualisasi pada penelitian kali ini menerima input citra hyperspectral dan menghasilkan output berupa citra venasi. Proses automasi mendapatkan citra venasi menggunakan model klasifikasi. Model klasifikasi dibuat berdasarkan infomasi panjang gelombang dari vena dan bagian helaian daun. Tujuan model klasifikasi ini adalah memprediksi bagian vena pada citra hyperspectral Algoritma klasifikasi yang digunakan pada penelitian ini adalah Support Vector Machine SVM , Multi Layer Perceptron Classifier MLPC , serta Decision Tree DT . Hasil akurasi dari model mencapai 97 pada model SVM, 95 pada model MLPC, dan 81 pada model DT. Model SVM dan MLPC selanjutnya digunakan untuk memprediksi citra hyperspectral untuk menghasilkan citra venasi daun bayam merah. Hasil akhir, berupa citra venasi menggunakan model SVM lebih baik karena mampu memvisualisasikan bagian vena primer dan vena sekunder dibandingkan citra venasi dengan model MLPC.

ABSTRACT
Venation visualization broadly have been done by RGB images using morphological image processing. The result of that method can visualizing leaf venation properly, but it depends on camera resolution and limited spectral information. In this research, we developing venation visualization system using hyperspectral image on band 400 1000nm. Our system visualizing red amaranth leaf venation as a output and hyperspectral image for input. To automated identifying venation region, we built classification model to predict based on spectral information. Classification model take every hyperspectral image pixel to predict leaf vein. In this work, we made 3 classification model namely SVM Support Vector Machine , MLPC Multi Layer Perceptron Classifier , and DT Decision Tree . Our model trained by 5 fold cross validation. Average accuracy score for SVM model up to 97 , 95 for MLPC and 81 on DT. Regard this accuracy result, SVM and MLPC model used for constructed venation image and DT model fall on overfitting state. The final result, SVM perform better than MLPC by visualizing primary vein and secondary vein."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jonathan Edwin
"Citra berkabut disebabkan oleh partikel mikro di udara yang menyerap atau memantulkan gelombang elektromagnetik. Hasil citra yang didapat akan buram atau kehilangan informasi secara detail. Penelitian ini bertujuan untuk menganalisis pengaruh kabut terhadap citra hyperspectral termasuk wavelength dependence, perubahan hue, dan ekstraksi informasi warna. Selain itu, penelitian ini akan membandingkan hasil dehazing pada citra spektral berkabut dengan citra spektral yang ditransformasi menjadi citra RGB. Hasil penelitian menunjukkan bahwa pengaruh kabut pada citra spektral adalah wavelength dependent. Selanjutnya perubahan kabut hampir sama sekali tidak signifikan perubahan pada hue tetapi perubahan terlihat dengan jelas pada intensitas citra. Visualisasi warna citra hyperspectral perlu dilakukan koreksi terhadap jarak wavelength untuk menghasilkan citra RGB yang baik. Selain itu, hasil dehazing pada citra hyperspectral lalu divisualisasi warna dengan metode CLTR berhasil memulihkan warna pada citra dibandingkan dehazing terhadap citra RGB.

Hazy images are caused by microparticles in the air absorbing or reflecting electromagnetic waves. The resulting image will be blurry or lose detailed information. This study analyzes the effect of fog on the hyperspectral image, including wavelength-dependence, hue changes and color information extraction. This study will also compare the results of dehazing on a hazy hyperspectral image with a spectral image transformed into an RGB image. The results showed that the effect of fog on the spectral image is wavelength dependence. Furthermore, the change in fog is almost completely insignificant for the shift in hue. Still, the difference is clearly visible in the intensity of the image. Hyperspectral image color visualization needs to be corrected to the distance wavelength to produce an excellent RGB image. Besides, the results of dehazing on a hyperspectral image and then visualized by the CLTR method succeeded in restoring the color in the image compared to dehazing against an RGB image."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>