Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 67710 dokumen yang sesuai dengan query
cover
Rizki Ramadhiani
"Permasalahan optimisasi portofolio merupakan topik penelitian yang cukup banyak dibahas dalam bidang keuangan. Model yang biasa digunakan dalam permasalahan tersebut adalah model mean variance yang berfokus pada expected return dan risiko tanpa mempertimbangkan kendala yang terdapat dalam masalah sebenarnya. Pada skripsi ini digunakan model optimisasi portofolio yang mempertimbangkan kendala seperti kendala kardinal dan kendala kuantitas atau biasa dikenal dengan model Mean Variance Cardinality Constrained Portofolio Optimization MVCCPO. Pada skripsi ini menggunakan metode e-New Local Search based Multiobjective Optimization Algorithm yang menonjolkan metode local search dan non dominated sorting didalamnya. Hasil dari penelitian ini menunjukan bahwa metode e-NSLS cukup baik digunakan dalam permasalahan optimisasi portofolio.

Portfolio optimization problem is common research topic in finance. The model that usually used of this problem is Markowitz mean variance model focus in expected returns and risks, without conidering constraints in real life. In this thesis used a more realistic portfolio optimization problem, such as cardinality and quantity constraints, which is called Markowitz mean variance cardinality constrained portfolio optimization problem MVCCPO problem. This thesis used an algorithm which is based on a multiobjective local search schema and non dominated sorting. The result of this is simulation is good enough to use e NSLS in portofolio optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hafiz Syadeq Pahlevi
"Optimisasi portofolio saham bertujuan untuk memberikan return yang maksimal dan risiko yang minimum. Salah satu cara untuk mendapatkan portofolio optimum adalah diversifikasi. Diversifikasi adalah pemilihan portofolio dengan mempertimbangkan pengalokasian dana ke berbagai saham yang berbeda dengan tujuan penyebaran risiko. Pada skripsi ini, algoritma Extension of Nondominated Sorting and Local Search (e-NSLS) digunakan untuk menghitung proporsi setiap saham. Kemudian, untuk mencari portofolio optimum dari proporsi yang telah diperoleh, digunakan model optimisasi portofolio Possibilistic Semiabsolute Deviation yang mempertimbangkan biaya transaksi, kendala kardinalitas, dan kendala kuantitas, dengan asumsi return setiap saham adalah bilangan fuzzy. Metode ini menghasilkan nilai tertinggi dari rata-rata return sebesar 36,04% dan Sharpe Ratio sebesar 28,75, yang lebih tinggi daripada S&P 500 Index dengan rata-rata return 12,34% dan Sharpe Ratio 2,7.

Stock portfolio optimization aims to provide maximum return and minimum risk. One way to get an optimum portfolio is diversification. Diversification is portfolio selection by considering allocation funds to different stocks with aim to spreading the risk. In this thesis, Extension of Nondominated Sorting and Local Search (e-NSLS) is used to calculate the proportion of each stock. Then, to find the optimum portfolio from proportions that have been obtained, we use Possibilistic Semiabsolute Deviation model, which considers transaction costs, cardinality constraints, and quantity constraints, and assuming the return of each stock is fuzzy numbers. This method produces the highest value of the average return 36,04% and Sharpe Ratio 28,75, which is higher than the S&P Index with an average return 12,34% and Sharpe Ratio 2,7."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Yan
"Masalah optimisasi portofolio adalah masalah untuk mencari portofolio dengan return maksimal dan risiko minimal. Pada skripsi ini, digunakan model optimisasi portofolio multi objektif. Algoritma Multi-objective Co-variance based Artificial Bee Colony M-CABC digunakan untuk menyelesaikan masalah optimisasi portofolio. Algoritma M-CABC merupakan pengembangan dari algoritma Artificial Bee Colony ABC menggunakan konsep kovariansi statistik dan dipakai untuk masalah optimisasi portofolio. Implementasi dilakukan dengan menggunakan lima sampel data OR-Lib; port1, port2, port3, port4, dan port5. Hasil yang didapat dibandingkan dengan unconstrained efficient frontier dari lima sampel data. Dari hasil simulasi, Algoritma M-CABC menghasilkan solusi yang cukup dekat dengan solusi pada unconstrained efficient frontier.

Portfolio optimization problem is a problem to find portfolio with maximum return and minimum risk. In this skripsi, multi objective portfolio optimization model is used. Multi objective Co variance based Artificial Bee Colony M CABC algorithm is used to solve porto folio optimization problem. M CABC algorithm is developed from Artificial Bee Colony ABC algorithm using statistical co variance concept and is used for portfolio optimization problem. Implementation is done using five OR Lib data samples port1, port2, port3, port4, dan port5. Obtained results is compared with unconstrained efficient frontier of five data samples. From simulation results, M CABC algorithm gives solutions that is near solutions on the unconstrained efficient frontier."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Maulita Putri
"Di era zaman modern ini, manusia dituntut untuk lebih bekerja keras dalam memenuhi
kebutuhan dan keinginan mereka. Salah satunya dengan cara berinvestasi. Investasi
adalah suatu tindakan dimana seseorang membeli saham, obligasi, atau surat pernyataan
lainnya. Salah satu jenis investasi adalah Exchange-Traded Funds (ETF) yang dimana
investor dapat melihat pergerakan saham didalamnya dan membuat keputusan untuk
membeli atau menjual saham yang disebut sebagai trading. Pada skripsi ini, ditunjukkan
bahwa algoritma trading berdasarkan teori kontrol dapat membantu investor dalam
membuat keputusan tersebut untuk mendapatkan nilai portofolio yang optimal dalam
transaksi ETF. Hasil implementasi pada tiga saham, menunjukkan bahwa terdapat saham
dan kombinasi saham tertentu yang memiliki nilai portofolio optimal. Nilai portofolio
optimal ditentukan oleh kecepatan nilai portofolio tersebut mencapai target dan besarnya nilai portofolio tersebut pada akhir periode.(
)In this modern era, humans are required to work harder in fulfilling their needs and
desires. One of them is by investing. Investment is any action in which someone buy
shares, bonds, or other. One type of investment is Exchange-Traded Funds (ETF) where
investors can see the movement of shares in it and make the decision to buy or sell shares
called trading. In this thesis, it is shown that trading algorithms based on control theory
can help investors make these decisions to get optimal portfolio values in ETF
transactions. The results of the implementation of three stocks indicate that there are
certain stocks and stock combinations that have optimal portfolio values. The optimal
portfolio value is determined by the speed at which the portfolio value reaches the target
and the value of the portfolio at the end of the period.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hansel Setiadi
"Investasi dipandang sebagai cara efektif untuk meningkatkan kekayaan. Investasi yang banyak diminati oleh investor adalah saham karena frekuensi perdagangan saham lebih tinggi dibandingkan dengan frekuensi investasi lain di pasar modal. Dilansir dari Otoritas Jasa Keuangan (OJK), salah satu penyebab investor mengalami kerugian adalah tidak melakukan analisis terlebih dahulu sebelum berinvestasi. Analisis saham diperlukan bagi para investor karena menjadi salah satu faktor penentu untuk mengambil tindakan saat akan transaksi pada pasar modal. Optimasi portofolio adalah proses menemukan saham-saham yang terbaik, yang optimal, yang mampu memberikan return yang maksimum dengan risiko yang minimum. Metaheuristik didefinisikan sebagai metode optimasi yang dilakukan secara berulang untuk mencari solusi terbaik penyelesaian sesuai dengan fungsi objektifnya atau tujuan akhirnya. Harris Hawks Optimization (HHO) adalah algoritma optimasi metaheuristik berbasis populasi (population-based) dan alam (nature-based) untuk menangani berbagai tugas pengoptimalan. Penelitian ini bertujuan untuk mengimplementasikan algoritma HHO terhadap optimasi portofolio saham-saham LQ45. Fungsi utama dari portofolio adalah untuk membantu menentukan return yang diinginkan dengan melakukan diversifikasi, atau strategi mengalokasikan saham yang tidak saling terkait. Dengan menggunakan metode HHO beserta dengan Teori Portofolio Modern, dilakukan 10 kali simulasi dengan hasil total sebanyak 25000 kombinasi. Nilai optimum yang diperoleh merupakan titik konvergensi dari fungsi objektif yang bernilai 0,2465, dengan bobot saham yang diperoleh masing-masing sebesar 0,0222. Serta algoritma HHO yang dibuat memiliki kecepatan rata-rata yang cukup cepat untuk mencapai titik konvergen untuk masalah minimalisasi kovarians saham, yaitu dibawah tiga iterasi.

Investment is seen as an effective way to increase wealth. Investments that are in great demand by investors are stocks because the frequency of stock trading is higher than the frequency of other investments in the capital market. Reporting from the Financial Services Authority (OJK), one of the causes of investors experiencing losses is not conducting an analysis before investing. Stock analysis is necessary for investors because it is one of the determining factors for taking action when making transactions in the capital market. Portfolio optimization is the process of finding the best, optimal stocks, which are able to provide maximum returns with minimum risk. Metaheuristics is defined as an optimization method that iteratively improves the solution according to its objective function or final goal. Harris Hawks Optimization (HHO) is a population-based and nature-based metaheuristic optimization algorithm to handle various optimization tasks. This research aims to implement the HHO algorithm for portfolio optimization of LQ45 stocks. The main function of the portfolio is to decide the expected return by doing diversification, or strategy to allocate unrelated stocks. By using the HHO method and Modern Portfolio Theory, 10 simulations were conducted with a total of 25000 combinations. The optimum value obtained is the convergence point of the objective function which is 0.2465, with the weight of the shares obtained of 0.0222 each. And the HHO algorithm made has an average speed that is fast enough to reach the convergence point for the stock covariance minimization problem, which is under three iterations."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rifqi Satria Dinandra
"Pemilihan portofolio adalah salah satu bidang penelitian yang menarik dan penting di bidang keuangan karena masa depan dan ketidak beraturan pasar keuangan yang tidak dapat diprediksi. Setiap investor berharap mendapatkan tingkat pengembalian yang tinggi untuk portofolio mereka dengan risiko sekecil mungkin dan hal ini sulit dicapai, sehingga investor mencoba menyeimbangkan kinerja dan risiko portofolio melalui diversifikasi. Tujuan penelitian ini adalah untuk menyelidiki strategi pemilihan portofolio melalui metode clustering dan Genetic Algorithm. Clustering digunakan untuk diversifikasi portofolio dengan membentuk sekelompok aset homogen berdasarkan karakteristik rasio keuangan mereka. Ada tujuh rasio keuangan yang akan digunakan, yaitu EPS, PER, PEG, ROE, DER, Current Ratio, dan Profit Margin.
Dalam skripsi ini digunakan algoritma Density Based Clustering of Application with Noise sebagai metode clustering DBSCAN. Setelah fase clustering, Genetic Algorithm digunakan untuk membentuk portofolio optimum. Genetic Algorithm secara otomatis memilih portofolio dengan risiko dan pengembalian yang optimal berdasarkan hasil clustering dengan memutuskan aset dan bobot masing-masing yang akan dimasukkan dalam portofolio. Algoritma genetika didasarkan pada model Mean Variance Cardinality Constrained Portofolio Optimization MVCCPO dan disebut metode Genetic Algorithm dengan kendala. Metode ini berhasil memberikan tingkat pengembalian dan Sharpe ratio yang lebih tinggi 25,35 dan 17,20 dibandingkan dengan indeks S P 500 pada periode waktu yang sama dengan tingkat pengembalian dan Sharpe ratio masing-masing 12,34 dan 2,7.

Portfolio selection is one of the interesting and important fields of research in finance because of the unpredictable future and randomness of the financial market. Every investor is hoping to get a high rate of return for their portfolio with as little risk as possible, which is hard to achieve, so investors try to balance the performance and risk of the portfolio through diversification. The motivation of this research is to investigate the portfolio selection strategies through clustering method and application of genetic algorithm. Clustering is used to diversify the portfolio by forming a homogenous cluster of assets with respect to their financial ratios characteristic. There are seven financial ratio characteristics that is used, they are EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin.
In this thesis, Density Based Clustering Algorithm with Application of Noise used as the clustering method DBSCAN. After the clustering phase, genetic algorithm used for portfolio selection. Genetic Algorithm automatically select the optimum risk and return portfolio based on the clustered asset by deciding which assets and their respective weights included in the portfolio. The genetic algorithm is based on the Mean Variance Cardinality Constrained Portofolio Optimization MVCCPO model and called a Constrained Genetic Algorithm. The method succesfully give a higher level of return 25,35 and Sharpe ratio 17,20 compared to S P 500 index in the same period of time 12.34 and 2.7 respectively.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Reiza Yusuf
"Optimisasi Portofolio bertujuan untuk melindungi investor dari segala risiko yang mungkin terjadi. Diversifikasi saham merupakan salah satu solusi untuk mengoptimalkan portofolio saham, dimana portofolio yang terdiversifikasi cenderung memiliki risiko yang lebih kecil dibandingkan dengan yang portofolio yang tidak terdiversifikasi. Agglomerative clustering merupakan salah satu metode hierarchical clustering. Untuk mengaplikasikan konsep diversifikasi, Agglomerative Clustering digunakan untuk mengelompokkan 40 saham berdasarkan pada 7 rasio finansial EPS, PER, PEG, ROE, DER, Current Ratio dan Profit Margin. Genetic algorithm GA adalah metode pencarian berdasarkan prinsip seleksi alam dan genetika. Setelah saham dikelompokkan, Genetic algorithm dengan heuristic crossover diaplikasikan pada tiap klaster untuk menentukan proporsi dari tiap saham. Dalam skripsi ini, model optimisasi possibilistic mean-semi-absolute deviation digunakan dimana kardinalitas, kuantitas, dan biaya transaksi dipertimbangkan sebagai kendala, dimana return dari aset diasumsikan merupakan bilangan fuzzy. Implementasi metode menghasilkan tingkat return 29.77 dan Sharpe Ratio 18.7097 yang lebih tinggi dibandingkan dengan indeks S P 500 pada periode waktu yang sama 12.34 dan 2.7 secara berurutan.

Portfolio optimization aims to protect investors against any risks which they may experience. Stock diversification is one of the solutions to optimize stock portfolio, where a diverse portfolio tends to have less risk then the undiversified one. Agglomerative clustering is one of hierarchical clustering method. To apply diversification concept, Agglomerative Clustering is used to cluster 40 different assets based on their financial ratio scores EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin. Genetic algorithms GA are search methods based on principles of natural selection and genetics. After the stocks are clustered, Genetic algorithm with heuristic crossover is applied on each cluster alongside to determine the weight of each stock. In this thesis, a possibilistic mean semi absolute deviation optimization model is used where cardinality, quantity, and transaction cost are considered as constraints, where the returns of risky assets are assumed as fuzzy numbers. The implementation shows that the method gave a higher level of return 29.77 and Sharpe ratio 18.7097 compared to S P 500 index in the same period of time 12.34 and 2.7 respectively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Very Dwi Vasiani
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63204
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayip Farouk
"ABSTRAK
Untuk berkontribusi dalam pengembangan energi terbarukan, penelitian ini bertujuan untuk menemukan keputusan yang tepatdari pemanfaatan Tandan Kosong Kelapa Sawit TKKS sebagai salah satu bahan yang potensial di Indonesia.Produk akhir dari pemanfaatan TKKS pada penelitian ini adalah Etanol, Furfural, dan Listrik. Multi-objektif yang akan di lakukan pada penelitian ini adalah NPV maksimum dan CO2 minimun yang akan diukur dengan Kurva Pareto. Penelitian sebelumnya sudah melakukan optimasi namun NPV yang dihasilkan masih belum ekonomis, salah satunya dikarenakan biaya kapital dari pemasangan sistem gugus tenaga surya yang masih mahal. Oleh karena itu, pada penelitian ini pengembangan yang akan penulis lakukan adalah dengan mengganti sumber kukus dengan bahan bakar gas alam. Sehingga mampu mengurangi biaya kapital dan diharapkan bisa memperbaiki NPV agar lebih ekonomis. Pada penelitian ini, diperoleh suhu operasi yang optimum pada unit praperlakuan sebesar 180o C, dan juga split fraksi 0.25 TKKS masuk kedalam unit hidrolisis. Pada kondisi ini, diperoleh NPV sebesar 43.6 juta dan emisi sebesar 9.237 juta kgCO2 Ekuivalen.

ABSTRACT
For doing some contribution in development of renewable energy, this study has an objective to find an optimum decision for Empty Fruit Bunch EFB utilization as one of potential raw material in Indonesia. The final products from EFB utilization in this study are ethanol, furfural, and electricity. Multi Objective that will optimize in this study are NPV maximum and CO minimum that will measure with Pareto Curve. The recent study has done the optimizing but the NPV still not economic. It s happen because the capital cost from CSP utilization as a steam generation still expensive. In this study, natural gas will use as a fuel for steam generation, so that can decrease the capital cost and can make the NPV become economic. In this study, the optimum operation temperature was obtained in 180o C and split fraction in 0.25 EFB into hidrolisis reactor unit. In this condition, the result for NPV is 43,6 million and emission 9.237 million kgCO2 equivalent."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erica
"Diversifikasi portofolio telah dijadikan solusi dalam memitigasi risiko dalam berinvestasi. Tujuan utama diversifikasi portofolio adalah untuk mengurangi variansi return dibandingkan dengan investasi pada satu saham tertentu. Metode Clustering, misalnya Agglomerative Clustering, digunakan untuk mengelompokkan saham-saham ke dalam masing-masing klaster yang homogen berdasarkan risiko. Klaster-klaster yang terbentuk kemudian akan digunakan sebagai acuan diversifikasi portofolio. Objek yang digunakan dalam metode clustering adalah 7 skor rasio finansial PER, EPS, PEG, DER, ROE, Current Ratio dan Profit Margin dari setiap saham. Selanjutnya, proporsi dari setiap saham pembentuk portofolio ditentukan melalui aplikasi Genetic Algorithm ke masing-masing klaster.
Pada penelitian ini, metode Genetic Algorithm dibangun berdasarkan model MVCCPO sehingga membentuk metode Genetic Algorithm Constrained. Performa dari Agglomerative Clustering Genetic Algorithm Constrained yang dievaluasi menggunakan data aktual, menghasilkan portofolio yang mampu mengalahkan return portofolio pasar dan memiliki rata-rata return yang lebih besar dibandingkan dengan portofolio yang dikonstruksi dengan metode Genetic Algorithm saja. Namun, dengan hubungan linear antara risiko dan return, adalah masuk akal bahwa portofolio dengan return yang lebih besar akan memiliki risiko yang lebih besar pula.

The purpose of portfolio diversification is to reduce the return rsquo s variance risk compared with a single stock investment or undiversified portfolio. The primary motivation of this research is to investigate the portfolio selection strategies through clustering and genetic algorithm. Clustering serves as a method to cluster assets with similar financial ratio scores the scores of EPS, PER, PEG, ROE, DER, Current Ratio and Profit Margin. By clustering method such as Agglomerative Clustering, stocks with similar risk profile are clustered together and the clusters produced can be used in diversifying portfolio. Genetic Algorithm will then be applied to each resulting cluster to obtain the optimal proportion of each stock in the portfolio.
The Genetic Algorithm used in this study is built from the MVCCPO model hence making it a Constrained Genetic Algorithm. The performance of Constrained Genetic Algorithm refined with Agglomerative Clustering in portfolio optimization, evaluated based on some actual datasets, gives a portfolio that beats the market and has bigger expected return than a portfolio constructed with only Genetic Algorithm. Due to the direct relationship of risk and return, it is logical to expect portfolio with a bigger return would have a bigger risk.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>