Ditemukan 105953 dokumen yang sesuai dengan query
Aldila Fitrilia
"
ABSTRAKAnalisis survival merupakan analisis statistika yang digunakan untuk menyelidiki waktu tahan hidup suatu benda atau individu pada keadaan tertentu. Dalam melakukan analisis survival dibutuhkan data survival yang meliputi waktu survival dan status waktu survival dari objek yang diteliti. Data survival yang diperoleh dapat berupa data lengkap atau data tidak lengkap. Data tidak lengkap data tersensor dapat berupa data tersensor kanan, kiri, atau interval. Data tersensor kanan dapat berupa data tersensor kanan tipe I atau data tersensor kanan tipe II. Dalam penelitian ini akan digunakan data tersensor kanan tipe II. Fungsi survival yang akan digunakan adalah fungsi survival dari distribusi Lomax. Distribusi Lomax memiliki dua paremeter, yaitu parameter bentuk dan parameter skala. Dalam penelitian ini, parameter yang akan ditaksir adalah parameter bentuk dengan asumsi parameter skala telah diketahui. Metode yang digunakan dalam penelitian ini adalah metode Bayes. Penelitian ini akan menggunakan prior Gamma sebagai distribusi conjugate prior dan fungsi Loss yang akan digunakan dalam penelitian ini adalah balanced squared error loss function BSELF .
ABSTRACTSurvival analysis is a statistical analysis used to investigate the life time of an object or an individual in a special case. In survival analysis, survival data is needed which includes the survival time and status of the survival time of the object under study. The survival data obtained can be either complete data or incomplete data. Incomplete data censored data can be either right, left, or interval censored data. The right censored data can be either right censored data type I or type II. In this study will be used the right censored data type II. The survival function to be used is the survival function of the Lomax distribution. The Lomax distribution has two parameters, that is the shape parameter and the scale parameter. In this study, the parameter will be estimate is the shape parameter with the assumption of scale parameters has been known. The method used in this study is Bayes method. This study will use prior Gamma as conjugate prior distribution and Loss function will be used in this study is balanced squared error loss function BSELF."
2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Lukas Hansel Briliano
"Distribusi Burr Tipe XII atau yang biasa dikenal dengan distribusi Burr merupakan salah satu dari dua belas tipe distribusi kontinu dalam sistem Burr. Distribusi Burr mempunyai karakteristik menceng kanan dan mempunyai tail yang tebal. Distribusi Burr dapat diterapkan dalam berbagai masalah survival. Untuk mempelajari lebih lanjut, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi Burr pada data tersensor kanan dengan metode Bayes. Prosedur penaksiran adalah dengan menentukan distribusi prior yang digunakan, yaitu conjugate prior, pembentukan fungsi likelihood untuk data tersensor kanan dan pembentukan distribusi posterior. Penaksir Bayes didapatkan dengan cara meminimumkan fungsi risiko posterior berdasarkan fungsi loss. Fungsi loss yang digunakan adalah Square Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Setelah didapatkan penaksir Bayes, dilakukan simulasi data untuk membandingkan keefektifan taksiran parameter dari kedua fungsi loss menurut Mean Square Error (MSE). Yang dimaksud penaksir yang efektif adalah penaksir yang mempunyai MSE lebih kecil. Selain itu dilihat juga pengaruh intensitas tersensor pada kedua fungsi loss menurut MSE. Berdasarkan hasil simulasi, penaksir Bayes dengan PLF lebih efektif daripada SELF dan semakin besar intensitas tersensor maka MSE yang dihasilkan semakin besar untuk kedua fungsi loss.
Burr Type XII distribution is known as Burr distribution, is one of the twelve types continous distribution on Burr system. Burr distribution is heavy-tailed and right-skewed. Burr distribution has an important role in survival analysis. To learn more, parameter estimation is needed. This study will explain about parameter estimation of Burr distribution for right censored data with Bayes method. Procedure for estimating parameter are, determine which prior distribution to use, that is conjugate prior, likelihood function construction for right censored data and calculation of posterior distribution. Bayes estimator is obtained by minimize posterior risk function based on loss function. This study will use Square Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation will be done to compare the effectiveness of Bayes estimator with both loss function according to Mean Square Error (MSE). What is meant by effective estimator is it has smaller MSE. Besides, this study is also explained the effect of the censored intensity according to MSE. Based on simulation results, Bayes estimator with PLF is more effective than SELF and greater censored intensity, greater MSE produced, for both loss function."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Rahajeng Ika Desyana Putri
"Analisis survival membutuhkan data survival yang terdiri dari waktu survival sekumpulan objek. Data survival dapat berbentuk data lengkap maupun tersensor. Namun data survival biasanya merupakan data tersensor. Salah satu data tersensor yang sering digunakan adalah data tersensor kanan tipe II yaitu merupakan data waktu kejadian dimana pengamatan dihentikan setelah diperoleh r objek pertama yang mengalami kejadian dari n objek yang diuji. Dilakukan pengamatan data survival tersensor kanan tipe II diperoleh grafik fungsi survival, fungsi survival serta fungsi kepadatan probabilitas yang merepresentasikan data tersebut. Fungsi kepadatan probabilitas data tersebut merupakan fungsi dari sebuah variabel random berdistribusi Rayleigh. Karena parameter tidak diketahui selanjutnya dilakukan penaksiran parameter.
Dalam skripsi ini dicari penaksir parameter distribusi Rayleigh pada data survival tersensor kanan tipe II dengan metode Bayes menggunakan dua fungsi loss yaitu Square Error Loss Function SELF dan Precautionary Loss Function PLF. Selanjutnya dilihat sifat bias dari penaksir parameter tersebut. Kemudian membandingkan hasil taksiran parameter dari kedua fungsi loss berdasarkan Mean Square Error MSE yang dihasilkan melalui simulasi data. Misalkan adalah parameter yang akan ditaksir, untuk diperoleh PLF memberikan hasil taksiran yang baik dan untuk diperoleh SELF memberikan hasil taksiran yang baik. Taksiran dikatakan baik apabila nilai MSE yang dihasilkan semakin kecil.
The survival analysis requires survival data consisting of survival time of a set of objects. Survival data can be either complete or censored data. However, survival data is usually censored data. One of the censored data that is then used is the right type censored data type II that is the time data of the events used to find the objects that exist. Recurrence of right type categorized survival data is obtained by graph of survival function, survival function and probability function which represents the data. The probability data relation function is a randomly distributed Rayleigh variable. Because the parameter is unknown, parameter estimation is performed. In this thesis is searched the estimator of Rayleigh distribution parameter on the right type categorized survival data type II with Bayes method using two loss function that is Square Error Loss Function SELF and Precautionary Loss Function PLF. A bias viewpoint of the estimator 39s parameter. Then compare the parameter estimation results of the second function based on Mean Square Error MSE generated through data simulation. Let be the parameter to be estimated, for le 1 obtaining the PLF gives good estimates and for 1 the SELF result gives a good estimation result. The estimate that the resulting MSE values is getting smaller."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Sisca Agnessia
"Dalam Penelitian ini akan dicari taksiran mean stratum pada sampling acak stratifikasi. Pada sampling acak stratifikasi, seringkali hanya tersedia beberapa pengamatan pada masing-masing strata. Kecilnya ukuran sampel akan menyebabkan penaksir langsung dari mean stratum menjadi kurang tepat. Metode alternatif yang dapat digunakan untuk menaksir mean dari stratum adalah dengan menggunakan metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran mean stratum pada sampling acak stratifikasi dengan cara menggabungkan informasi awal atau informasi yang telah tersedia sebelumnya tentang parameter yang akan ditaksir dengan informasi dari data sampel. Informasi awal disebut juga informasi prior. Penggabungan dari informasi prior dan informasi dari data akan menghasilkan informasi posterior. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior diestimasi dari data.
In this research will find the estimated stratum mean in stratified random sampling. In the stratified random sampling, often only available a few observations in each strata. The small sample size would cause a direct estimator of the mean stratum becomes less precise. Alternative methods that can be used to estimate the mean of the stratum is to use the Empirical Bayes method. Empirical Bayes methods used to find the estimated mean stratum in stratified random sampling by combining the initial information or information that has been available previously on the parameters to be estimated with information from the data sample. Preliminary information also known as prior information. The incorporation of prior information and information from the data will result in posterior information. In the Empirical Bayes method, prior information is not available so the information estimated from prior data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45105
UI - Skripsi Membership Universitas Indonesia Library
Margaretha
"Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.
Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Mochamad Ivan Janitra Rama
"Distribusi Weibull digunakan untuk menyelesaikan masalah-masalah yang menyangkut lama waktu suatu objek yang mampu bertahan hingga akhirnya objek tersebut tidak berfungsi (dengan kata lain rusak atau mati). Distribusi Weibull merupakan salah satu solusi untuk masalah fleksibilitas yang tidak dimiliki oleh distribusi Exponensial, yaitu hanya memiliki bentuk fungsi hazard yang konstan. Dalam melakukan inferensi dari kasus yang dimodelkan dengan distribusi Weibull, perlu dilakukan penaksiran terhadap parameternya. Distribusi Weibull dua parameter memiliki parameter skala dan parameter shape. Pada skripsi ini, akan dilakukan penaksiran parameter skala dari distribusi Weibull pada data terpancung kiri dan tersensor kanan dengan asumsi bahwa parameter shape diketahui menggunakan metode Bayesian. Prosedur dalam penaksiran parameter meliputi penentuan distribusi prior, fungsi dan distribusi posterior. Kemudian penaksir titik Bayes diperoleh dengan meminimumkan ekspektasi dari fungsi. Fungsi yang digunakan adalah Squared Error Loss Functio (SELF) dan Precautionary Loss Function (PLF). Kemudian dilakukan simulasi data untuk membandingkan nilai Mean Squared Error (MSE) dari taksiran parameter skala menggunakan fungsi. Hasil simulasi menunjukan bahwa taksiran parameter menggunakan fungsi memiliki nilai MSE yang lebih kecil untuk parameter skala lebih kecil atau sama dengan satu sedangkan taksiran parameter menggunakan fungsi PLF memiliki nilai MSE yang lebih kecil untuk parameter skala lebih besar daripada satu.
Weibull distribution is used to solve problems that involve the length of time an object is able to survive until the object is not function (in other words damaged or dead). Weibull distribution is one of many solutions to the flexibility problem that is not owned by an Exponential distribution, which only has the form of a constant hazard function. In making inferences from cases modeled with the Weibull distribution, it is necessary to estimate the parameters. The two-parameter Weibull distribution has a scale parameter and a shape parameter. In this thesis, the scale parameter of the Weibull distribution will be estimated on left truncated and right censored data assuming that the shape parameter are known using Bayesian method. The procedure in parameter estimation includes the determination of the prior distribution, the likelihood function and the posterior distribution. Then the point estimator of the scale parameter is obtained by minimizing the expectation of loss function. The loss function used in this thesis are Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). Data simulation is done to compare the value of Mean Squared Error (MSE) from the estimated parameters using SELF and PLF. The simulation result shows that the estimated parameter using SELF has a smaller MSE value for scale parameter below or equal one while the estimated parameter using PLF has a smaller MSE value for scale parameter above one."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Universitas Indonesia, 1990
S27321
UI - Skripsi Membership Universitas Indonesia Library
Yuridunis Saidah
"Kemiskinan berdasarkan buku Analisis dan Perhitungan Tingkat Kemiskinan 2008, ditentukan berdasarkan ketidakmampuan untuk mencukupi kebutuhan pokok minimum seperti pangan, sandang, kesehatan, perumahan, dan pendidikan yang diperlukan untuk dapat hidup dan bekerja. Kebutuhan pokok minimum diterjemahkan sebagai ukuran finansial dalam bentuk uang. Nilai kebutuhan pokok minimum tersebut dikenal dengan istilah garis kemiskinan. Jadi penduduk miskin adalah penduduk yang memiliki rata-rata pengeluaran perkapita per bulan di bawah Garis Kemiskinan (GK). Data dan informasi kemiskinan yang akurat dan tepat sasaran sangat diperlukan untuk memastikan keberhasilan pelaksanaan program – program penanggulangan kemiskinan khususnya untuk tingkat daerah yang lebih kecil seperti kecamatan maupun kelurahan/desa. Dalam tugas akhir ini akan ditaksir proporsi kemiskinan di setiap kecamatan di Kabupaten Gresik. Populasi dalam penelitian tugas akhir ini adalah seluruh rumah tangga di Kabupaten Gresik. Sampel diambil diambil secara acak dari data survei BPS 2008. Untuk menaksir proporsi kemiskinan di setiap kecamatan di Kabupaten Gresik digunakan metode Hierarchical Bayes (HB) pada Small Area Estimation (SAE) dan dilakukan penaksiran langsung. Setelah diperoleh hasil taksiran dengan menggunakan penaksiran langsung dan metode HB, akan dibandingkan variansi penaksiran langsung dan variansi metode HB. Diperoleh bahwa variansi metode HB lebih kecil dibandingkan variansi penaksiran langsung sehingga taksiran metode HB lebih akurat."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Pocut Shafira Putri Aurora
"Pembiayaan yang disalurkan oleh Bank Pembiayaan Rakyat Syariah (BPRS) di Indonesia mengalami kenaikan sejak tahun 2015. Namun demikian, Non Performing Financing (NPF) BPRS di Indonesia terus meningkat. Hal ini menyebabkan menurunnya tingkat profitabilitas BPRS di Indonesia. Oleh karena itu, menentukan nasabah yang berpotensi mengalami pembiayaan bermasalah menjadi penting. Teknik klasifikasi dapat menjadi salah satu solusi agar BPRS dapat memprediksi dengan lebih akurat dan efisien. Dengan demikian, BPRS dapat menghindari kasus pembiayaan bermasalah Penelitian ini dilakukan di BPRS Serambi Mekkah yang terletak di Langsa, Aceh Timur. Variabel yang digunakan dalam penelitian ini adalah Nilai Jual, Nilai Jaminan, Periode Pembiayaan, Tingkat Keuntungan Disepakati, Pekerjaan Nasabah, Usia Nasabah, dan Riwayat Kelancaran Pembiayaan. Penelitian ini menggunakan metode Naïve Bayes dan Discriminant Analysis untuk mengklasifikasikan status akhir pembiayaan nasabah yang mengajukan pembiayaan. Hasil penelitian menunjukkan bahwa model Discriminant Analysis memiliki performa klasifikasi yang lebih baik dibandingkan dengan Naïve Bayes. Selain itu, penelitian ini juga melihat variabel yang paling berpengaruh terhadap pengklasifikasian status akhir nasabah variabel yang berpengaruh signifikan terhadap model klasifikasi adalah Periode Pembiayaan, Tingkat Keuntungan Disepakati, Umur Nasabah, dan Riwayat Kelancaran Pembiayaan.
Financing demand in Sharia Rural Bank (BPRS) in Indonesia has been increasing since 2015. However, BPRS Non-Performing Financing (NPF) in Indonesia continues to increase. This causes a decrease in profit for BPRS across Indonesia. Therefore, determining bank customers who have the potential to experience financing default becomes crucial. Classification techniques can be a solution for BPRS to have a more accurate and efficient prediction system to avoid financing default. This research was conducted at BPRS Serambi Mekkah, located in Langsa, East Aceh. The variables used in this research are Selling Price, Collateral Value, Financing Period, Agreed Margin Percentage, Customer’s Occupation, Customer’s Age, and Financing History. This study uses the Naïve Bayes and Discriminant Analysis methods to classify the final status of customers who apply for financing. The results show that the Discriminant Analysis model has a better classification performance compared to Naïve Bayes. In addition, this study also looks at the variables that have the most significant influence on the classification model. The variables that have a significant effect on the classification model are the Financing Period, Agreed Margin Percentage, Customer’s Age, and Financing History."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Yudistira
"Dalam penerapan statistika di masyarakat, metode pengambilan sampel dilakukan untuk mendapatkan informasi tentang populasi yang menjadi fokus pengamatan. Namun karena keterbatasan dalam menjalankan metode pengambilan sampel, banyaknya sampel tersebut seringkali tidak mencukupi untuk mendapatkan taksiran yang presisi untuk populasi. Oleh karena itu, dikembangkan beberapa metode alternatif untuk menaksir parameter tersebut dengan area sampel yang jumlahnya kecil yang dibahas dalam topik Small Area Estimation. Dalam skripsi ini, dijelaskan tentang bagaimana mencari taksiran titik dari rata-rata populasi pada Small Area dengan metode Empirical Bayes berdasarkan model tingkat area. Secara umum, metode ini diawali dengan pendefinisian Model Spasial Tingkat Area, yaitu model dasar tingkat area dengan tambahan definisi model efek acak spasial pada . Model tersebut selanjutnya menjadi dasar untuk menaksir parameter rata-rata populasi dengan menggunakan Metode Empirical Bayes. Pada bagian akhir skripsi ini juga diberikan contoh penerapan metode Spatial Empirical Bayes untuk menaksir tingkat kemiskinan di Kota Depok pada tahun 2012.
In the application of statistics in society, sampling methods are conducted to obtain information about the populations that become a focus of observation. However, due to limitations in carrying out of sampling methods, the number of samples is often not sufficient to obtain precise estimates for the population. Therefore, several alternative methods are developed for estimating the parameters with a small number of sample areas which has covered in the topics Small Area Estimation. This paper is described about how to find a point estimation of population mean on small area with Empirical Bayes method based on area level model. In general, this method starts with defining the Spatial Area Level Model, which is the basic area level model with an additional definition of spatial random effects model for . That model then becomes basis for estimate parameter of population mean using Empirical Bayes methods. At the end, this paper also give an example of the application of Spatial Empirical Bayes methods for estimating poverty in Depok in 2012."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S56956
UI - Skripsi Membership Universitas Indonesia Library