Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 198280 dokumen yang sesuai dengan query
cover
Dilla Fadlillah Salma
"Kepemilikan dan penggunaan kendaraan mobil memiliki berbagai risiko negatif, seperti terjadinya kecelakaan. Untuk mengurangi beban risiko tersebut, perusahaan menjual produk asuransi mobil. Asuransi mobil merupakan salah satu produk perusahaan asuransi kendaraan yang bertujuan sebagai upaya perlindungan pemilik kendaraan mobil dari kerugian finansial yang terjadi pada kendaraan yang diasuransikannya. Untuk menawarkan produk asuransi, beberapa perusahaan menggunakan teknik penjualan dengan cara cold calling. Teknik penjualan tersebut akan lebih efektif menjual produk asuransi jika terlebih dahulu data nasabah calon pembeli asuransi diprediksi atau diklasifikasi ke dalam kelas membeli atau tidak membeli.
Pada skripsi ini, dilakukan klasfikasi dengan metode Support Vector Machine (SVM), Random Forest (RF),dan Logistic Regression (LR) dengan implementasi metode seleksi fitur One Dimensional Naïve Bayes Classifier (1-DBC). Data yang diperoleh berjumlah 4000 data dengan total 18 fitur. Diperoleh hasil bahwa akurasi SVM lebih tinggi dibandingkan dengan kedua metode lainnya. Selain itu, mplementasi metode seleksi fitur telah berhasil meningkatkan akurasi dari metode Random Forest, dan Logistic Regression. Dengan implementasi 1-DBC, ketiga metode klasifikasi memperoleh hasil akurasi tertinggi pada penggunaan 15 fitur.

Ownership and use of car vehicles have a variety of negative risks, such as accidents. To reduce the risk burden, the company sells car insurance products. Car insurance is one of the products of a vehicle insurance company that aims to protect vehicle owners from financial losses that occur on their insured vehicles. To offer insurance products, some companies use sales techniques using cold calling. The sales technique will be more effective in selling insurance products if first the prospective customer buyer data is predicted or classified into the class of buying or not buying.
In this paper, classification is done using the method of Support Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR) by implementing the One Dimensional NaA-ve Bayes Classifier (1-DBC) feature selection method. The data obtained amounted to 4000 data with a total of 18 features. The results were obtained that the accuracy of SVM was higher compared to the other two methods. In addition, the implementation of the feature selection method has succeeded in increasing the accuracy of the Random Forest, and Logistic Regression. With the implementation of 1-DBC, the three classification methods obtained the highest accuracy results with the use of 15 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ricco Yhandy Fernando
"Penyakit pada paru-paru merupakan gangguan yang cukup serius dimana dapat menyerang sistem pernapasan manusia dan bisa berakibat fatal jika tidak ditangani dengan serius. Pada saat ini deteksi penyakit pada paru-paru masih dilakukan secara manual oleh para dokter ahli, namun proses secara manual memakan waktu lama. Oleh karena itu, dalam penelitian ini dibuat sistem yang dapat mendeteksi dan mengklasifikasi penyakit paru-paru dengan otomatis. Dalam penelitian ini akan digunakan dua metode yaitu Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes . Data yang digunakan dalam penelitian ini adalah data screening yang berjumlah seratus data pasien, data di dapatkan dari salah satu sumber yang memiliki data primer yaitu salah satu rumah sakit di Yogyakarta. Penelitian ini menggunakan dua belas gejala paru-paru dan diklasifikasikan kedalam lima kelas penyakit paru-paru yaitu tuberkulosis, penyakit paru obstruktif kronis, pneumonia, asma bronkial, kanker paru. Sistem klasifikasi akan di implementasikan menggunakan bahasa pemrograman PHP. Pengujian kinerja klasifikasi menggunakan Confusion Matrix dan aplikasi diuji dengan menggunakan System Usability Scale. Penelitian ini menghasilkan sistem klasifikasi penyakit paru-paru dengan menggunakan metode Support Vector Machine dan Ensemble Bagging Gaussian Naïve Bayes, dari hasil pengujian akurasi Confusion Matrix pada algoritma Support Vector Machine mendapatkan hasil akurasi 93,9% , recall 92%, precison 79%, dan f1 score 54%, sedangkan pada Ensemble Bagging Gausian Naïve Bayes mendapatkan hasil akurasi 88,9 % recall 92%, precision 79%, f1 score 54%, serta pengujian sistem menggunakan metode System Usability Scale nilai yang diperolah sebesar 73 atau mendapatkan grade B.

Lung disease is a serious disorder that can attack the human respiratory system and can be fatal if not treated seriously. Currently, lung disease detection is still done manually by expert doctors, but the manual process takes a long time. Therefore, in this research a system was created that can detect and classify lung diseases automatically. In this research, two methods will be used, namely Support Vector Machine and Ensemble Bagging Gaussian Naïve Bayes. The data used in this research is screening data consisting of one hundred patient data, the data was obtained from one source that has primary data, namely one of the hospitals in Yogyakarta. This study used twelve lung symptoms and classified them into five classes of lung disease, namely tuberculosis, chronic obstructive pulmonary disease, pneumonia, bronchial asthma, lung cancer. The classification system will be implemented using the PHP programming language. Classification performance testing uses the Confusion Matrix and the application is tested using the System Usability Scale. This research produces a lung disease classification system using the Support Vector Machine method and Ensemble Bagging Gaussian Naïve Bayes, from the results of Confusion Matrix accuracy testing on the Support Vector Machine algorithm, the results are 93.9% accuracy, 92% recall, 79% precision, and f1 score was 54%, while Ensemble Bagging Gausian Naïve Bayes obtained accuracy results of 88.9%, recall 92%, precision 79%, f1 score 54%, and system testing using the System Usability Scale method obtained a score of 73 or got grade B.  "
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Nur Ichsan
"Saat ini, Indonesia menempati peringkat kedua sebagai produsen karet terbesar di dunia, menyumbang sekitar 29,8% dari kebutuhan global. Namun, produksi karet di Indonesia mengalami penurunan dari tahun ke tahun, salah satu faktornya adalah serangan penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp. Pada tahun 2021, luas perkebunan karet yang terkena penyakit mencapai 30.328,84 hektar dan tanaman yang terinfeksi oleh penyakit tersebut mengalami penurunan produksi lateks hingga 30%. Penyakit ini menyerang daun dengan gejala pembentukan bercak berukuran 0,5-2 cm yang menyebabkan nekrosis dan gugur. Penklasifikasian tingkat keparahan penyakit Pestalotiopsis sp. secara morfologi melalui pengamatan jumlah bintik dan warna pada daun karet membutuhkan waktu dan tenaga besar, terutama karena luasnya perkebunan yang terinfeksi. Oleh karena itu, penggunaan metode machine learning diusulkan untuk mengurangi waktu dan usaha yang dibutuhkan dalam menklasifikasi penyakit gugur daun akibat jamur Pestalotiopsis sp. Pada penelitian ini, model machine learning digunakan untuk mengklasifikasi 5 kelas tingkat keparahan penyakit Pestalotiopsis sp. yaitu tingkat 0 (sehat), tingkat 1 (terinfeksi ringan), tingkat 2 (terinfeksi sedang), tingkat 3 (terinfeksi parah), dan tingkat 4 (terinfeksi sangat parah). Dataset yang digunakan adalah citra daun tanaman karet yang diperoleh dari Pusat Penelitian Karet Sembawa. Model machine learning menerima input data citra daun tanaman karet, lalu citra disegmentasi menggunakan k-mean clustering. Data yang telah tersegmentasi kemudian diekstraksi dengan fitur warna hue, saturation, dan value (HSV) dan fitur jumlah bintik dengan metode contour detection menggunakan Suzuki’s contour algorithm. Selanjutnya, fitur-fitur ini diklasifikasikan menggunakan Support Vector Machine (SVM) tipe one vs rest multiclass classification dan Grid Search Cross Validation dengan 5 fold untuk menemukan hyperparameter terbaik untuk SVM. Hyperparameter terbaik adalah kernel radial basis function dengan C=100. Berdasarkan hasil percobaan sebanyak 5 kali, diperoleh kesimpulan bahwa model dengan akurasi tertinggi adalah model yang menggunakan fitur warna dan jumlah bintik dengan nilai rata-rata akurasi sebesar 81,86% dan nilai rata-rata Cohen’s kappa statistic sebesar 0,77 yang artinya model mampu mengklasifikasi data citra daun tanaman karet dengan cukup baik.

Currently, Indonesia ranks as the second largest rubber producer in the world, contributing about 29.8% of global demand. However, rubber production in Indonesia has decreased from year to year, one of the factors is the attack of leaf fall disease caused by the fungus Pestalotiopsi sp. In 2021, the area of rubber plantations affected by the disease reached 30,328.84 hectares with infected plants have a 30% decrease in latex production. The disease attacks the leaves with symptoms of spot formation measuring 0.5-2 cm which causes necrosis and fall. Detecting the severity of Pestalotiopsis sp. morphologically through the observation of the number of spots and colors on rubber leaves requires a lot of time and energy, especially due to the large area of infected plantations. Therefore, the use of machine learning methods is proposed to reduce the time and effort required in classifying leaf fall disease caused by the fungus Pestalotiopsis sp. In this study, a machine learning model is used to classify 5 classes of Pestalotiopsis sp. disease severity, namely level 0 (healthy), level 1 (mild infected), level 2 (moderate infected), level 3 (severe infected), and level 4 (very severe infected).  The dataset used is an image of rubber plant leaves obtained from the Sembawa Rubber Research Center. The machine learning model received input data of rubber plant leaf images, then the image is segmented using k-mean clustering. The segmented data will then be extracted with hue, saturation, and value (HSV) color features and the number of spots feature with the contour detection method using Suzuki’s contour algorithm.  In this study, the performance evaluation used is accuracy and Cohen's kappa statistic. Furthermore, these features are classified using Support Vector Machine (SVM) type one vs rest multiclass classification and Grid Search Cross Validation with 5 folds to find the best hyperparameter for SVM. The best hyperparameter is the radial basis function kernel with C=100. Based on the results of 5 experiments, it is concluded that the model with the highest accuracy is a model that uses color and the number of spots features with an average accuracy value of 81.86% and an average Cohen's kappa statistic value of 0.77, which means that the model is able to classify rubber plant leaf image data quite well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yuni Rosita Dewi
"Prediksi klaim merupakan proses penting dalam industri asuransi karena perusahaan asuransi dapat menyiapkan jenis polis asuransi yang tepat untuk masing-masing pemegang polis potensial. Frekuensi prediksi klaim dewasa ini kian meningkat. Sehingga data prediksi klaim yang memiliki volume besar ini disebut big data, baik dari segi jumlah fitur maupun jumlah data pemegang polis. Salah satu alternatif solusi perusahaan asuransi untuk melihat pemegang polis melakukan klaim atau tidak, bisa menggunakan machine learning yang teruji dapat digunakan untuk klasifikasi dan prediksi. Salah satu metode machine learning untuk mengurangi jumlah fitur adalah dengan proses seleksi fitur, yaitu mencari urutan fitur berdasarkan tingkat pentingnya fitur. Metode seleksi fitur yang digunakan adalah Gram-Schmidt Orthogonalization. Metode ini sebelumnya digunakan untuk data tidak terstruktur namun pada penelitian ini diuji pada data terstruktur bervolume besar. Untuk menguji urutan fitur yang diperoleh dari proses seleksi fitur, digunakan Support Vector Machine karena termasuk metode machine learning yang popular untuk klasifikasi. Berdasarkan hasil simulasi, urutan yang diperoleh dari proses Gram-Schmidt Orthogonalization relatif konsisten. Selanjutnya, dapat diketahui fitur-fitur yang paling berpengaruh untuk menentukan pemegang polis klaim atau tidak. Simulasi juga menunjukkan bahwa hanya dengan menggunakan sekitar 26 % fitur, akurasi yang dihasilkan sebanding dengan menggunakan semua fitur.

Claim prediction is an important process in the insurance industry because insurance companies can prepare the right type of insurance policy for each potential policyholder. The frequency of today`s claim predictions is increasing. So that claim prediction data has a large volume called big data, both in terms of the number of features and the number of policyholders. One alternative solution for insurance companies to see whether policyholders claim or not, we can use machine learning that is proven to be used for classification and prediction. One of the machine learning methods to reduce the number of features is the feature selection process, which is to search for sequences of features based on their importance feature. The feature selection method used is Gram-Schmidt Orthogonalization. This method was previously used for unstructured data, but in this research is tested on large volume structured data. Support Vector Machine is used to test the ordered features obtained from the feature selection process because it is a popular machine learning method for classification. Based on a result, the ordered features obtained from the Gram-Schmidt Orthogonalization process is relatively stable. After that, it can also be seen the most important features to determine policyholders claim or not. The simulation also shows that using only about 26 % features, the resulting accuracy is comparable to using all features."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54313
UI - Tesis Membership  Universitas Indonesia Library
cover
Antonius Rangga Hapsoro Wicaksono
"Kanker merupakan salah satu penyebab kematian utama di dunia, dengan 18,1 juta kasus dan 10 juta kematian pada 2020. Kanker serviks menempati urutan keempat secara global dan kedua di Indonesia. Tingginya angka kematian lebih banyak terjadi di negara berpenghasilan menengah ke bawah karena keterbatasan akses pada pencegahan. Deteksi dini kanker serviks sering sulit dilakukan hingga mencapai stadium lanjut. Salah satu metode deteksi dini adalah menggunakan machine learning. Penelitian ini mengaplikasikan algoritma stacking classifier yang menggabungkan decision tree, support vector machine, dan random forest sebagai first-level learner, serta logistic regression sebagai meta learner, untuk mengklasifikasi pasien kanker serviks. Dataset berasal dari 858 pasien di Hospital Universitario de Caracas, Venezuela. Data dibagi 70% untuk pelatihan dan 30% untuk pengujian, dengan lima percobaan acak. Model menghasilkan akurasi rata-rata 95,03%, precision 99,05%, sensitivity 95,49%, specificity 89,39%, dan G-mean 92,37%. Meskipun stacking ensemble menunjukkan performa yang baik, model tunggal menghasilkan kinerja yang sedikit lebih baik namun tidak signifikan.

Cancer is a leading cause of death worldwide, with 18.1 million cases and 10 million deaths in 2020. In Indonesia, there were 396,914 cases and 235,511 deaths. Cervical cancer is the fourth most common cancer globally and the second most common in Indonesia. Higher death rates occur in low- and middle-income countries due to limited access to preventive measures. Cervical cancer is often difficult to detect until it reaches an advanced stage. This research applies a machine learning approach, using a stacking classifier algorithm that combines decision tree, support vector machine, and random forest models as first-level learners, with logistic regression as the meta learner, to classify patients with and without cervical cancer. The dataset, from the UCI Repository, contains data from 858 patients at risk for cervical cancer at Hospital Universitario de Caracas in Venezuela. The data was split into 70% for training and 30% for testing, with five random trials. The model achieved an average accuracy of 95.03%, precision of 99.05%, sensitivity of 95.49%, specificity of 89.39%, and a G-mean of 92.37%. While the stacking ensemble model performed well, single-classifier models showed slightly better performance, though the difference was not significant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kesia Gabriele
"Support Vector Machine (SVM) merupakan model klasifikasi yang dikenal dengan keakuratan klasifikasi yang tinggi. Namun, Support Vector Machine (SVM) menghasilkan hasil klasifikasi yang kurang optimal jika data yang digunakan tidak seimbang (imbalanced data). Terdapat beberapa cara dalam menangani data yang tidak seimbang, salah satunya dengan metode resampling. Metode resampling sendiri terbagi dalam dua pendekatan yaitu over-sampling dan under-sampling. Salah satu pendekatan over-sampling yang popular adalah Synthetic Minority Over-sampling Technique (SMOTE). SMOTE bekerja dengan membangkitkan sampel sintetis pada kelas minoritas. Untuk meningkatkan kinerja model, SMOTE dapat digabungkan dengan pendekatan under-sampling seperti Edited Nearest Neighbors (ENN) dan Cluster-based Undersampling Technique (CUT). Dalam kombinasinya dengan SMOTE, ENN berperan sebagai cleaning untuk menghapus data sintetis dari penerapan SMOTE yang tidak relevan dan dianggap sebagai noise. Sementara, CUT beperan dalam mengidentifikasi sub-kelas dari kelas mayoritas untuk menekan angka over-sampling sekaligus meminimalisir hilangnya informasi penting pada kelas mayoritas selama proses undersampling. Kombinasi over-sampling dan under-sampling ini saling melengkapi dan mengatasi kekurangan dari masing-masing metode. Penelitian ini memfokuskan perbandingan performa metode resampling SMOTE beserta variasinya, yaitu SMOTEENN dan SMOTE-CUT dalam mengklasifikasikan data multi-kelas yang tidak seimbang menggunakan Support Vector Machine. Dari analisis yang dilakukan, diperoleh kesimpulan bahwa SMOTE-CUT cenderung menghasilkan performa klasifikasi yang lebih baik dibandingkan dengan SMOTE ataupun SMOTE-ENN. Walaupun demikian, keseluruhan metode resampling (SMOTE, SMOTE-ENN, dan SMOTE-CUT) mampu meningkatkan kinerja dari model klasifikasi Support Vector Machine (SVM).

Support Vector Machine (SVM) is popular classfier that is known for its high accuracy value. However, Support Vector Machine (SVM) may not perform well on imbalanced datasets. There are several ways to handle imbalanced data, one of them is through resampling methods. Resampling methods itself divided into two approaches, oversampling and under-sampling. One of the popular over-sampling methods is Synthetic Minority Over-sampling Technique (SMOTE). SMOTE works by generating synthetic samples for the minority class. SMOTE can be combined with under-sampling methods such as Edited Nearest Neighbors (ENN) or Cluster-based Under-sampling Technique (CUT). In combination with SMOTE, ENN acts as a cleaning role to remove synthetic data generated from SMOTE application that is not relevant and considered as noise. Meanwhile, CUT plays a role in identifying sub-class form the majority class to reduce over-sampling while minimizing the loss of important information in the majority class during the under-sampling process. The combination of over-sampling and undersampling is needed to complement and overcome the weakness of each method. This research mainly focuses on comparing the performance of the resampling method SMOTE and its variations, SMOTE-ENN and SMOTE-CUT, in classifying multi-class imbalanced data using Support Vector Machine. From the analysis conducted, it was concluded that data with resampling SMOTE-CUT shows better classification performance compare to data with resampling SMOTE or SMOTE-ENN. However, any resampling method (SMOTE, SMOTE-ENN, and SMOTE-CUT) can handle imbalanced data and improve Support Vector Machine performance."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"Skizofrenia adalah gangguan jiwa yang serius dan kronis. Penyakit ini ditandai dengan gangguan dalam pemikiran, persepsi, dan tingkah laku. Karena gangguan-gangguan ini dapat memicu penderita Skizofrenia untuk bunuh diri atau mencoba bunuh diri, penderita Skizofrenia mempunyai usia harapan hidup yang lebih rendah dari populasi umum. Skizofrenia juga sulit untuk didiagnosis karena belum ada tes secara fisik untuk mendiagnosisnya dan gejala-gejalanya sangat mirip dengan beberapa gangguan jiwa lainnya. Dengan menggunakan Northwestern University Schizophrenia Data, penelitian ini bertujuan untuk mengklasifikasikan orang yang menderita Skizofrenia dan orang yang tidak menderita Skizofrenia. Data tersebut terdiri dari 392 observasi dan 65 variabel yang merupakan data demografis dan data kuesioner Scale for the Assessment of Positive Symptoms dan Scale for the Assessment of Negative Symptoms yang diisi oleh klinisi. Metode klasifikasi yang digunakan adalah machine learning dengan metode Support Vector Machines SVM dan Twin Support Vector Machines Twin SVM menggunakan MATLAB R2017a. Simulasi dilakukan dengan data dan persentase data training dan testing yang berbeda-beda. Pada setiap simulai, akurasi serta running time diukur. Validasi dan evaluasi performa dari model yang telah dioptimasi dilakukan dengan mengambil rata-rata dari sepuluh kali Hold-Out Validation yang dilakukan. Pada umumnya, metode Twin SVM berhasil mengklasifikasikan data Skizofrenia dengan lebih akurat dibandingkan dengan metode SVM. Metode Twin SVM dengan kernel Gaussian menghasilkan hasil akhir akurasi klasifikasi data Skizofrenia yang terbaik, yaitu 91,0 . Berdasarkan hasil akhir running time, metode SVM dengan kernel Gaussian untuk klasifikasi data Skizofrenia mempunyai running time yang paling cepat, 0,664 detik. Selain itu, metode SVM dengan kernel linear, metode SVM dengan kernel Gaussian, dan metode Twin SVM untuk klasifikasi data Skizofrenia berhasil mencapai akurasi hingga 95,0 dalam setidaknya satu simulasi.

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data as well as clinician filled Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms questionnaires. Classification methods that are used are machine learning with Support Vector Machines SVM and Twin Support Vector Machine Twin SVM using MATLAB R2017a. Simulations are done with different data and percentage of training and testing data. In each simulation, accuracy and running time are measured. Performance validation and evaluation of the optimized models are done by taking the average of ten times Hold Out Validations that were done. In general, Twin SVM successfully classified Schizophrenia data more accurately than the SVM method. Twin SVM with Gaussian kernel produced the best final accuracy in classifying Schizophrenia data, 91.0 . Based on the final running time, SVM with Gaussian kernel has the fastest running time in classifying Schizophrenia data, 0.664 seconds. Furthermore, SVM with linear kernel, SVM with Gaussian kernel, and Twin SVM managed to reach an accuracy of 95.0 in at least one simulation in classifying Schizophrenia data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni Putu Ayu Audia Ariantari
"Kestabilan perekonomian suatu negara ditentukan oleh sektor-sektor ekonomi di dalamnya. Salah satu sektor yang sedang berkontribusi secara signifikan di Indonesia adalah asuransi. Industri Asuransi sedang mengalami perluasan pada beberapa tahun terakhir. Seiring dengan perluasan tersebut, terdapat kompetisi antar perusahaan asuransi di Indonesia. Kompetisi ini menuntut perusahaan asuransi untuk lebih cerdik dalam mengungguli pasar. Tetapi, perlu diperhatikan bahwa perusahaan asuransi harus selalu sadar akan tingkat risiko yang harus ditanggungnya. Sehingga perlunya dilakukan penelitian tentang kemungkinan klaim di masa depan dari perusahaan asuransi.
Dalam penelitian ini, akan difokuskan pada sektor asuransi kendaraan bermotor di Indonesia. Model yang diajukan pada penelitian ini adalah suatu machine learning yang biasa digunakan untuk masalah klasifikasi dan prediksi. Metode klasifikasi yang digunakan adalah Support Vector Machines dan Fuzzy Support Vector Machines. Penelitian ini menggunakan data historis polis dari suatu perusahaan asuransi umum di Indonesia. Data historis polis ini terdiri dari 7.373 data dengan periode waktu berlaku polis adalah setahun terhitung dari Januari 2015 sampai dengan Desember 2016. Setelah itu, dibandingkan hasil dari kedua metode tersebut untuk mendapatkan hasil yang terbaik. Penggunaan data historis polis dari suatu asuransi umum di Indonesia ini menunjukkan bahwa Support Vector Machines menghasilkan tingkat akurasi rata rata 100 dalam klasifikasi dua kelas yaitu klaim dan tidak klaim. Memang waktu yang dibutuhkan relatif lama dalam mengklasifikasi data yaitu 4673,33 detik. Kemudian dibandingkan hasil olahan dengan klasifikasi Fuzzy Support Vector Machines dengan komposisi 80 training data dan akurasi yang dihasilkan adalah 99,23 .

Economics stability of a country is depending on each economics sector of the country. One of the most sector that give a significant contribution is Insurance. Insurance Industry is rapidly grow in recent years. As it grows bigger, there is exist one simple core that indeed affected Insurance Industry in Indonesia which is a competition. The competition is to force one Insurance company to be sharper to win the market. On the other hand, one should realize that Insurance company must be well aware of the immerging risk rate. Insurance company indeed should be prepared for the probability of high indemnities. It leads to the point that a study about future claim should be done for this matter.
In this study, one will focus on Automobile Insurance in Indonesia. The proposed model for this matter is using the mighty machine learning that is well known for classification and prediction problems. The classification methods that one will use are Support Vector Machines and Fuzzy Support Vector Machines. The aims of this study are to compare those two classification methods. This study also use a comprehensive historical policy data from a General Insurance company in Indonesia. This data consists of 7373 data with a one year policy starting from January 2015 until December 2016. One will has to compare those two methods to gain the best result. The used of this historical policy data will show that a classification using Support Vector Machines will result in 100 accuracy for binary classification, in this case will be yes or no claim within one year period. It is indeed takes longer to classify using this method. It takes about 4673,33 seconds. Then, one will compare the result with the other method which is Fuzzy Support Vector Machines with the used of 80 training data. It shows that the accuracy is 99,23 .
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Woro Sudaryanti
"Penelitian ini melakukan studi mengenai sistem identifikasi pembicara berbahasa Indonesia menggunakan SVM. Parameter sistem terdiri atas silence removal, PCA, nilai rata-rata dan varians MFCC. Ujicoba menggunakan data berita berbahasa Indonesia dari televisi dan radio yang disegmen dalam 5, 10, 15 detik dengan jumlah data 26 jam (715 pembicara).
Hasil penelitian ini menunjukkan ketepatan pengenalan pembicara sebesar 94-98% untuk kombinasi parameter silence removal dan rata-rata MFCC dengan akurasi terbaik pada segmen waktu 10 detik. Namun dengan bertambahnya jumlah pembicara, ketepatan pengenalan cenderung berkurang. Penelitian ini dapat dikembangkan untuk sistem perolehan informasi data speech berdasarkan siapa yang berbicara dalam suatu sesi data.

This research studies speaker identification system for Indonesian speech based on SVM. Parameters of this system are silence removal, PCA, average and varians values of MFCC. The experiments use 26 hours (715 speakers) Indonesian broadcast news from radio and television segmented into 5, 10, 15 seconds.
The results achieve 94-98% identification accuracy for combination of parameters silence removal and average of MFCC. The best accuracy comes from 10 seconds time segment. However, the accuracy falls when the number of speakers increases. This study could be used for speech retrieval system based on who speaks in a speech session.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
T-Pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Rafiqatul Khairi
"Kanker pankreas adalah penyakit di mana sel-sel tumor ganas (kanker) berkembang di jaringan pankreas, yaitu organ di belakang perut bagian bawah dan di depan tulang belakang, yang membantu tubuh menggunakan dan menyimpan energi dari makanan dengan memproduksi hormon untuk mengontrol kadar gula darah dan enzim pencernaan untuk memecah makanan. Biasanya, kanker pankreas jarang terdeteksi pada tahap awal. Salah satu tanda seseorang mengalami kanker pankreas adalah diabetes, terutama jika itu bertepatan dengan penurunan berat badan yang cepat, penyakit kuning, atau rasa sakit di perut bagian atas yang menyebar ke punggung. Di antara berbagai jenis kanker, kanker pankreas memiliki tingkat kelangsungan hidup terendah, yaitu hanya sekitar 3-6% dari mereka yang didiagnosis yang dapat bertahan hidup selama lima tahun. Jika pasien didiagnosis tepat waktu untuk perawatan, peluang mereka untuk bertahan hidup akan meningkat. Terdapat penanda tumor yang biasa digunakan untuk mengikuti perkembangan kanker pankreas, yaitu CA 19-9 yang dapat diukur dalam darah. Orang sehat dapat memiliki sejumlah kecil CA 19-9 dalam darah mereka. Kadar CA 19-9 yang tinggi seringkali merupakan tanda kanker pankreas. Tetapi kadang-kadang, kadar tinggi dapat menunjukkan jenis kanker lain atau gangguan non-kanker tertentu, seperti sirosis dan batu empedu. Karena kadar CA 19-9 yang tinggi tidak spesifik untuk kanker pankreas, CA 19-9 tidak dapat digunakan dengan sendirinya untuk skrining atau diagnosis. Ini dapat membantu memantau perkembangan kanker dan efektivitas pengobatan kanker. Dalam studi ini, metode Kernel-based Support Vector Machine digunakan untuk mengklasifikasikan hasil tes darah CA19-9 menjadi dua bagian; data pasien yang didiagnosis dengan kanker pankreas atau pasien normal (tidak terdiagnosis kanker pankreas). Metode ini memperoleh akurasi sekitar 95%.

Pancreatic cancer is a disease in which malignant (cancerous) tumor cells develop in pancreatic tissue; organ behind the lower abdomen and in front of the spine, which helps the body use and store energy from food by producing hormones to control blood sugar levels and digestive enzymes to break down food. Usually, pancreatic cancer is rarely detected at an early stage. One sign of a person with pancreatic cancer is diabetes, especially if it coincides with rapid weight loss, jaundice, or pain in the upper abdomen that spreads to the back. Among various types of cancer, pancreatic cancer has the lowest survival rate of only about 3-6% of those diagnosed who can survive for five years. If patients are diagnosed on time for treatment, their chances of survival will increase. There is a tumor marker commonly used to follow the course of pancreatic cancer, namely CA 19-9 which can be measured in the blood. Healthy people can have small amounts of CA 19-9 in their blood. High levels of CA 19-9 are often a sign of pancreatic cancer. But sometimes, high levels can indicate other types of cancer or certain noncancerous disorders, including cirrhosis and gallstones. Because a high level of CA 19-9 is not specific for pancreatic cancer, CA 19-9 cannot be used by itself for screening or diagnosis. It can help monitor the progress of your cancer and the effectiveness of cancer treatment. In this study, the Kernel-based Support Vector Machine method is used to classify CA19-9 blood test results into two sections including data on patients diagnosed with pancreatic cancer or normal patients. This method will get an accuracy of around 95%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>