Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 141519 dokumen yang sesuai dengan query
cover
Britania Rohanauli Manik
"

Keberhasilan ekonomi merupakan suatu indikator yang baik dari sebuah masyarakat yang kaya. Meskipun demikian, ada banyak faktor lain yang memengaruhi kekayaan dan kesejahteraan masyarakat suatu negara seperti tingkat kebebasan pribadi, lingkungan hidup, dan pendidikan, yang merupakan elemen penting dalam menciptakan suatu masyarakat yang makmur. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang membentuk kemakmuran 149 negara di dunia selama tahun 2018. Dalam penelitian ini 74 variabel yang diambil dari Legatum Prosperity IndexTM digunakan, kecuali variabel-variabel yang berasal dari Gallup World Poll karena ketidaktersediaan data. Data dianalisis menggunakan Analisis Faktor, dan direduksi menjadi 13 faktor yang menggambarkan tentang berbagai aspek penting dalam kehidupan. Seratus empat puluh sembilan negara tersebut dikelompokkan berdasarkan skor faktor masing-masing negara menggunakan pengklasteran metode Ward menjadi 4 kelompok berbeda dengan masing-masing klaster beranggotakan negara-negara yang memiliki karakteristik yang serupa. Diperoleh bahwa Klaster 1 merupakan kelompok negara-negara yang secara keseluruhan makmur, Klaster 2 merupakan kelompok negara-negara yang cukup makmur dalam hal masyarakat yang inklusif, Klaster 3 merupakan kelompok negara-negara dengan tingkat kemakmuran yang cukup, dan Klaster 4 merupakan kelompok negara-negara yang cukup makmur dalam hal masyarakat yang berdaya serta ekonomi yang bebas.


Economic achievement is a good indicator of a wealthy society. Nevertheless, there are many other factors that affect in shaping the wealth and well-being of the people in a country, such as the level of personal freedom, the environment, and education which are important elements in creating a prosperous society. The aim of this study is to identify the factors that shape the prosperity of 149 countries in the world during 2018. In this study 74 variables taken from the Legatum Prosperity IndexTM are used, excluding variables originating from the Gallup World Poll due to data unavailability. The data is reduced using Factor Analysis into 13 factors that describe various aspects of life. The 149 countries are clustered based on their factor scores using Wards Clustering into 4 distinct groups of countries with similar features. It is revealed that Cluster 1 consists of countries that are overall prosperous, Cluster 2 consists of countries that are quite prosperous in terms of an inclusive society, Cluster 3 consists of countries with sufficient levels of prosperity, and Cluster 4 consists of countries that are quite prosperous in terms of an empowered society and a free economy.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahira Puti Adylla
"Kebahagiaan merupakan istilah yang mengacu pada kasih sayang, kesejahteraan, kepuasan, pengalaman kegembiraan, dan kekaguman. Kebahagiaan diukur berdasarkan indikator subjektif dan objektif. Indikator subjektif mengukur pengalaman emosional manusia mengenai peristiwa yang terjadi dalam kehidupannya. Sedangkan indikator objektif mengukur kesejahteraan materi berdasarkan aspek ekonomi, lingkungan sosial, politik, dan kesehatan. Penelitian ini membahas mengenai pengelompokan negara-negara berdasarkan indikator-indikator dari kebahagiaan dunia tahun 2021. Delapan indikator yang digunakan untuk pengelompokan dalam penelitian ini adalah GDP per kapita, dukungan sosial, harapan hidup sehat, kebebasan hidup, persepsi negatif masyarakat terhadap korupsi, kemurahan hati, indeks kriminalitas, dan biaya hidup. Penelitian ini menggunakan metode K-Means dan Fuzzy C-Means untuk mengelompokkan negara-negara. Dari kedua metode akan dicari metode pengelompokan yang paling optimal. Pemetaan hasil kelompok dari metode yang paling optimal dilakukan dengan metode Biplot. Berdasarkan hasil penelitian, didapatkan jumlah kelompok optimal untuk kedua metode adalah sebanyak 3 menggunakan indeks Silhouette untuk metode K-Means dan modifikasi koefisien partisi untuk metode Fuzzy C-Means. Dengan menggunakan nilai rasio simpangan baku dalam dan antar kelompok, didapatkan metode pengelompokan terbaik menggunakan metode K-Means dengan nilai rasio sebesar 0.4413. Kelompok 1 beranggotakan 35 negara yang didominasi oleh negara-negara di wilayah Sub-Saharan Afrika dan Asia Selatan, kelompok 2 beranggotakan 68 negara yang didominasi oleh negara-negara di wilayah Amerika Latin, Persemakmuran Negara-negara Merdeka (PNM), serta Eropa Timur dan Tengah, serta kelompok 3 beranggotakan 30 negara yang didominasi oleh negara-negara di wilayah Eropa Barat, Amerika Utara, dan Australia. Hasil pemetaan ketiga kelompok dengan metode Biplot mampu menerangkan keragaman data sebesar 64.2 persen. Kelompok 1 cenderung memiliki indeks kriminalitas yang tinggi, kemurahan hati yang tinggi, dan persepsi negatif masyarakat terhadap korupsi yang tinggi. Kelompok 2 cenderung memiliki indeks kriminalitas yang tinggi, persepsi negatif masyarakat terhadap korupsi yang tinggi, GDP per kapita yang tinggi, harapan hidup sehat yang tinggi, dan dukungan sosial yang tinggi. Kelompok 3 cenderung memiliki kebebasan hidup yang tinggi, biaya hidup yang tinggi, indeks kebahagiaan yang tinggi, dukungan sosial yang tinggi, harapan hidup sehat yang tinggi, dan GDP per kapita yang tinggi.

Happiness is a term that refers to affection, well-being, contentment, the experience of joy, and admiration. World happiness is measured based on subjective and objective indicators. The Subjective indicators measure human emotional experiences regarding events that occur in their lives. Meanwhile, objective indicators measure happiness based on economic, social, political, and health aspects. This study discusses the clustering of countries based on indicators of world happiness in 2021. In this study, eight indicators used for clustering are GDP per capita, social support, healthy life expectancy, freedom of life, negative perception of corruption, generosity, index crime, and cost of living. This study uses the K-Means and Fuzzy C-Means methods in clustering countries. From these two methods, the optimal clustering method will be sought. Mapping the cluster results was carried out using the Biplot method. Based on the research study, the optimal number of clusters for the both methods is 3 using the Silhouette index for the K-Means method and the partition modification coefficient for the Fuzzy C-Means method. By using the value of the standard deviation ratio within and between clusters, the best clustering method using the K-Means method is obtained with a ratio of 0.44129. The clustering results consisted of cluster 1 with 35 countries dominated by countries in the Sub-Saharan Africa and South Asia region, cluster 2 with 68 countries dominated by countries in Latin America, Commonwealth of Independent States, and Central and Eastern Europe region, and cluster 3 with 30 countries dominated by countries in the Western European, North America, and Australia region. The results of mapping the three groups using the Biplot method were able to explain the diversity of data by 64.2 percent. Cluster 1 tends to have a high crime index, high generosity, and a high negative perception of corruption. Cluster 2 tends to have a high crime index, high perception of corruption, high GDP per capita, high healthy life expectancy, and high social support. Cluster 3 has high freedom of living, high cost of living, high happiness index, high social support, high healthy life expectancy, and high GDP per capita."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
"Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan
pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk
membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor.
Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa
tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian
ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan
komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada
penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori
data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan
dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga
merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A
sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak
36 universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan
relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara,
kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal
dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan
kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini,
penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa
sebagai perguruan tinggi tujuan.

Financial concern has been one of the main reasons why an individual wants to pursue higher
education. That is why scholarship is needed to help students earn an education, especially until
doctoral degree. The amount of money spent by institution who give scholarship must be
equivalent with the quality of knowledge an awardee got. This study aims to do clustering
analysis of the world’s top universities based on tuition fee components for doctoral program
using K-Means method. The object of this study are universities based on QS World University
Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472
universities in the world who give fully funded program for doctoral study. Based on the
silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists
of 328, 108, and 36 universities in respective order. Group A consists of universities who have
chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B
consists of universities who have cheaper transportation, meanwhile Group A and C are quiet
similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on
the results, recommendations are given to the institution who provide scholarship about the
objective university for doctoral study.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asita Darma Irawati
"Pertimbangan finansial menjadi salah satu penentu utama apakah seseorang akan melanjutkan pendidikan ke tingkat yang lebih tinggi atau tidak, sehingga diperlukan beasiswa untuk membantu mahasiswa dalam menempuh pendidikan tinggi, terutama hingga tingkat doktor. Besar biaya yang dikeluarkan oleh lembaga penyedia beasiswa kepada penerima beasiswa tentunya diharapkan sepadan dengan kualitas ilmu yang diperoleh. Oleh karena itu, penelitian ini bertujuan untuk membahas analisis pengelompokan universitas terbaik dunia berdasarkan komponen biaya pendidikan program doktor dengan metode K-Means. Universitas pada penelitian ini diambil dari QS World University Rangkings (WUR) 2022. Analisis eksploratori data dilakukan dan diperoleh bahwa terdapat 83 dari 472 universitas di dunia memberi bantuan dana penuh untuk studi program doktor. Nilai Silhouette sebesar 0,72 menunjukkan bahwa tiga merupakan jumlah kelompok yang optimal bagi data. Sehingga terbentuk kelompok A sebanyak 328 universitas, kelompok B sebanyak 108 universitas, dan kelompok C sebanyak 36  universitas. Kelompok A terdiri dari universitas dengan SPP dan biaya hidup per bulan relatif rendah, kelompok B sedang, dan kelompok C tinggi. Untuk biaya transportasi udara, kelompok B cenderung rendah, sedangkan kelompok A dan C relatif serupa dan lebih mahal dari kelompok B. Sementara untuk biaya visa, kelompok A cenderung lebih murah, sedangkan kelompok B dan C cenderung serupa dengan biaya lebih mahal. Berdasarkan analisis ini, penulis memberikan saran universitas yang bisa dipertimbangkan lembaga pemberi beasiswa sebagai perguruan tinggi tujuan.

Financial concern has been one of the main reasons why an individual wants to pursue higher education. That is why scholarship is needed to help students earn an education, especially until doctoral degree. The amount of money spent by institution who give scholarship must be equivalent with the quality of knowledge an awardee got. This study aims to do clustering analysis of the world’s top universities based on tuition fee components for doctoral program using K-Means method. The object of this study are universities based on QS World University Rankings 2022. Exploratory data analysis is done and found that there are 83 out of 472 universities in the world who give fully funded program for doctoral study. Based on the silhouette value of 0.72, three is the best number of clusters for the data. Group A, B, C consists of 328, 108, and 36 universities in respective order. Group A consists of universities who have chepear tuition fee and monthly living cost compared to Group B dan C. However, Group B consists of universities who have cheaper transportation, meanwhile Group A and C are quiet similar. For visa, Group A is cheaper compared to Group B and C which are similar. Based on the results, recommendations are given to the institution who provide scholarship about the objective university for doctoral study."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luthfi Azra Aulia
"Kualitas hidup adalah suatu payung yang melingkupi variasi konsep fungsional, status kesehatan, persepsi, kondisi kehidupan, gaya hidup, dan kebahagiaan. Indikator dalam mengukur kualitas hidup terbagi menjadi dua, yakni indikator subjektif dan indikator objektif. Indikator subjektif berkaitan langsung dengan berbagai pengalaman yang seseorang alami dalam hidupnya. Di sisi lain, indikator objektif dikaitkan dengan wujud kepemilikan berbagai material atau faktor eksternal yang mempengaruhi berbagai pengalaman seseorang dalam menjalani kehidupannya. Pada penelitian ini, indikator objektif dipilih sebagai alat ukur kualitas hidup yang mencakup karakteristik sosial, ekonomi, kesehatan, dan lingkungan. Data yang digunakan dalam penelitian terdiri dari dua jenis data, yakni data numerik dan kategorik. Data yang digunakan merupakan data sekunder berisikan indikator objektif kualitas hidup di 82 negara pada tahun 2020. Adapun metode yang digunakan adalah algoritma K-prototypes dan Two Step Cluster (TSC) yang merupakan bagian dari metode pengelompokan nonhierarki dan hierarki serta dapat menangani data bertipe campuran (numerik dan kategorik). Hasil dari penelitian ini menunjukkan bahwa algoritma K-prototypes merupakan metode yang memberikan hasil lebih baik dalam mengelompokkan data penelitian dibandingkan algoritma TSC dengan nilai koefisien Silhouette sebesar 0,577, yang bermakna bahwa kelompok yang terbentuk telah memiliki struktur yang baik. Kelompok optimal yang terbentuk adalah sebanyak 2 kelompok yang disusun oleh 40 negara pada Kelompok 1 dan 42 negara pada Kelompok 2. Kelompok 2 cenderung memiliki profil kualitas hidup yang lebih baik dibandingkan Kelompok 1.

Quality of life is a phrase that covers a variety of functional concepts, health status, perception, living conditions, lifestyle, and happiness. Indicators in measuring quality of life are divided into two, namely subjective indicators and objective indicators. Subjective indicators are measured based on various experiences that people went through in life. On the other hand, objective indicators are measured based on various materials or external factors that affect a person's experiences in everyday life. In this study, objective indicators were chosen as quality measurement tools based on social, economic, health, and environmental characteristics. The data used in the study consisted of two types of data, namely numerical and categorical data. The data is secondary data containing objective indicators of quality of life in 82 countries in 2020. The method used in this research is the K-prototypes and Two Step Cluster (TSC) algorithm which is part of the non-hierarchical and hierarchical grouping method and can handle mixed-type data. The results of this study indicate that the K-prototypes algorithm is a method that gives better results than the TSC algorithm with a silhouette coefficient value of 0.577, which means that the formed group already has a good structure. The optimal groups formed are 2 groups composed of 40 countries in Group 1 and 42 countries in Group 2. Group 2 tends to have a better quality of life profile than Group 1."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahlia Amanda Putri
"ABSTRAK
Dalam mendukung pendidikan di Indonesia, pemerintah telah memberikan perhatian dengan cara mengalokasikan Anggaran Pendapatan dan Belanja Negara (APBN). Namun, masalah pendidikan pada jenjang Sekolah Menengah Atas (SMA) masih ditemukan, dimana salah satu akar permasalahannya adalah kurangnya fasilitas pendidikan. Jumlah SMA yang relatif banyak merupakan salah satu penghambat dalam penyaluran dana APBN tersebut. Dengan demikian, analisis pengelompokan SMA berdasarkan fasilitas pendidikan di Indonesia diharapkan dapat menjadi salah satu alternatif bagi pemerintah dalam memprioritaskan penyaluran dana APBN secara cepat dan tepat. Banyaknya observasi yang digunakan adalah 13.486 SMA dengan 9 variabel kategorik fasilitas pendidikan yang tercatat di website Kementerian Pendidikan dan Kebudayaan pada bulan Agustus tahun 2019. Adapun metode yang digunakan adalah Robust Clustering Using Link (ROCK) yang diyakini mempunyai tingkat akurasi yang baik dan mampu menangani data kategorik dalam jumlah yang besar. Untuk mendapatkan profil kelompok yang lebih jelas, metode ROCK dimodifikasi dengan melakukan Nested Clustering. Hasil dari penelitian ini menunjukkan bahwa terbentuk 14 kelompok SMA yang memiliki karakteristik masing-masing. Diperoleh kelompok 3 merupakan kelompok yang relatif baik dan kelompok 1a merupakan kelompok yang relatif kurang baik. Secara umum, SMA di Indonesia membentuk kelompok yang memiliki kebutuhan fasilitas pendidikan yang berbeda dan memerlukan perhatian dari pemerintah.

ABSTRACT
The government has given attention to support education in Indonesia by allocating the state budget (APBN). However, the problem of education at the senior high school level is still found, which one of the root problems is the lack of educational facilities. The large number of senior high schools in Indonesia becomes one of the barriers to distributing APBN funds. Thus, the analysis of the grouping of senior high schools based on educational facilities in Indonesia is expected to be an alternative for the government in prioritizing the distribution of APBN funds quickly and accurately. The number of observations is 13,486 with nine categorical variables recorded on a website of the Ministry of Education and Culture in August 2019. The method used is Robust Clustering Using Link (ROCK), which is believed has good accuracy and good to handle many categorical data. To get clearer profile of cluster, ROCK method modified with do Nested Clustering. The results of this study indicate that 14 clusters were formed and have their profiles. Cluster 3 is relatively good cluster while cluster 1a is relatively poor cluster. In general, high schools in Indonesia consist of groups that have different educational facility needs and require attention from the government."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ni, Xia
"The book is divided into 5 chapters, namely, Prosperity and Strongness: Prosperity: the good wishes and hopes of a century of the Chinese nation; Prosperity and Strongness: the essential requirement of socialism; contemporary China is marching on the road to prosperity and strength."
Beijing: China Renmin Universitiy, 2015
e20511163
eBooks  Universitas Indonesia Library
cover
Ananda Sekar Ayu
"Pola konsumsi pangan didefinisikan sebagai kebiasaan makan yang berbeda antara satu individu dengan individu lainnya. Perbedaan kebiasaan makan seseorang sejatinya dapat disebabkan oleh berbagai faktor, mulai dari faktor kesehatan, faktor harga, faktor agama, dan faktor budaya. Penelitian ini bertujuan untuk mengelompokkan individu dari lima kota besar di Indonesia berdasarkan pola konsumsi pangan. Terdapat 18 variabel yang digunakan dalam penelitian ini, 6 diantaranya merupakan variabel numerik dan 12 variabel lainnya merupakan variabel kategorik. Mengingat data yang digunakan terdiri dari dua jenis variabel yang berbeda, maka pengelompokan dilakukan secara terpisah. Variabel numerik dikelompokkan menggunakan metode K-Means Clustering, sementara variabel kategorik dikelompokkan menggunakan metode ROCK Clustering. Hasil kedua pengelompokan tersebut kemudian digabungkan dan dipandang sebagai data baru yang terdiri dari dua variabel bertipe kategorik. Variabel baru tersebut kemudian dikelompokkan kembali menggunakan metode pengelompokan data kategorik yang sebelumnya digunakan, yaitu ROCK Clustering. Proses pengelompokan data gabungan tersebut kemudian dikenal sebagai Ensemble Clustering. Hasil dari penelitian ini menunjukkan bahwa kelompok optimal yang terbentuk untuk data gabungan adalah sebanyak tiga klaster. Klaster satu terdiri dari 286 individu yang pola konsumsi pangannya cenderung dipengaruhi faktor harga, agama, dan budaya. Klaster dua terdiri dari 233 individu yang pola konsumsi pangannya cenderung dipengaruhi faktor kesehatan, agama, dan budaya serta cenderung netral akan faktor harga. Sementara itu, klaster tiga terdiri dari 191 individu yang pola konsumsi pangannya dipengaruhi faktor kesehatan, agama, dan budaya.

Food consumption patterns are defined as eating habits that differ from one individual to another. Differences in a person's eating habits can be caused by various factors, ranging from health factors, price factors, religious factors, and cultural factors. This study aims to clustering individuals from five cities in Indonesia based on food consumption patterns. There are 18 variables used in this study, 6 of them are numerical variables and 12 others are categorical variables. Since the data consists of two different types of variables, the clustering process will be done separately. Numerical variables were grouped using the K-Means Clustering, while categorical variables were grouped using the ROCK Clustering. The grouping result of numerical and categorical variables are then combined into a new data with two categorical variables. The new data then regrouped using the categorical data grouping method, namely ROCK Clustering. This process then known as Ensemble Clustering. The results of this study indicate that the optimal group formed for the new categorical data is three clusters. Cluster one consists of 286 individuals, where food consumption patterns in this cluster tend to be influenced by price, religion, and culture factors. Cluster two consists of 233 individuals, where food consumption patterns in this cluster tend to be influenced by health, religion, and cultural factors and tend to be neutral on price factors. Cluster three consists of 191 individuals, where food consumption patterns in this cluster are influenced by health, religion, and cultural factors."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kresensia Katrin Rianty
"Ibu Kota memiliki peran penting dalam menggambarkan seberapa besar kekuatan politik, kultural, dan ekonomi suatu negara. Apabila Ibu Kota suatu negara memiliki banyak masalah yang tidak terselesaikan, permasalahan tersebut dapat menjadi faktor–faktor yang memengaruhi suatu negara memindahkan Ibu Kotanya. Setelah ditelusuri, terdapat banyak negara yang pernah memindahkan Ibu Kotanya termasuk Indonesia. Tujuan dari penelitian ini adalah untuk membentuk model dan menganalisis faktor–faktor yang memengaruhi negara–negara di dunia memindahkan Ibu Kota dengan data yang mengandung masalah: 1. Outlier, 2. Missing values, 3. Data tak seimbang, 4. Multikolinearitas. Jika data mengandung masalah, maka model yang terbentuk menjadi tidak representatif dan sulit untuk diinterpretasikan. Sehingga diperlukan metode yang dapat digunakan untuk menangani 4 (empat) masalah tersebut, yaitu berturut-turut: 1. Quantile–Based Flooring Capping, 2. K–Nearest Neighbor, 3. Adaptive Synthetic (ADASYN), dan 4. Menerapkan model Least Absolute Shrinkage and Selection Operator (LASSO) pada regresi logistik. Hasilnya menunjukkan bahwa faktor yang memengaruhi suatu negara memindahkan Ibu Kotanya adalah ukuran populasi di Ibu Kota, populasi negara, luas area (km2), Usia Negara, sistem pemerintahan, Income Category, dan Sedangkan faktor yang tidak masuk ke dalam model yaitu Gross Domestic Product (GDP), Logistic Performance Index (LPI) Score, Regulatory Quality Index, dan E–Government Development Index adalah prediktor yang mengalami multikolinearitas, sehingga model LASSO pada regresi logistik berhasil menyusutkan prediktor tersebut menjadi 0. Adapun model akhir dari Least Absolute Shrinkage and Selection Operator (LASSO) pada regresi logistik yang diperoleh adalah g(x) = 0,3399 – 0,8019 POP_CITY + 3,5925 POP_COUNTRY + 0,3406 AREA – 0,0156 AIRPOL + 0,0679 GEI + 0,8351 PS_AVT – 0,5682 GOV_EFFECT – 1,8643 AGE – 0,7043 SYSTEM_A – 1,4408 SYSTEM_B – 0,7036 INCOME_A – 0,5272 INCOME_B – 3,7404 INCOME_C – 0,9489 ARCHIPELAGO.

The capital city plays an important role in portraying how much political, cultural and economic power a country has. If the capital city has many unresolved problems, these problems can become factors that influence the country to move its capital city. After being traced, there are many countries that have moved their capital cities, including Indonesia. The purpose of this study is to model and analyze the factors that influence countries in the world to move its capital city with data containing problems: 1. Outliers, 2. Missing values, 3. Imbalanced data, 4. Multicollinearity. If the data contains these problems, the model formed becomes unrepresentative and difficult to interpret. Therefore, the methods that can be used to handle these 4 (four) problems, respectively: 1. Quantile-Based Flooring Capping, 2. K-Nearest Neighbor, 3. Adaptive Synthetic (ADASYN), and 4. Applying the Least Absolute Shrinkage and Selection Operator (LASSO) model in logistic regression. The results showed that the factors that influence a country to move its capital city are population size in the capital city, country population, area (km2), air pollution level (mg/m3), Global Entrepreneurship Index (GEI), Political Stability and No Violence/Terrorism Index, Government Effectiveness Index, Country Age, government system, Income Category, and whether a country is an archipelago or not. While the factors that did not enter the model, namely the Gross Domestic Product (GDP), Logistic Performance Index (LPI) Score, Regulatory Quality Index, and E-Government Development Index were predictors that experienced multicollinearity, so the LASSO model in logistic regression successfully shrinks these predictors to 0. The final Least Absolute Shrinkage and Selection Operator (LASSO) model in logistic regression obtained is g(x) = 0,3399 – 0,8019 POP_CITY + 3,5925 POP_COUNTRY + 0,3406 AREA – 0,0156 AIRPOL + 0,0679 GEI + 0,8351 PS_AVT – 0,5682 GOV_EFFECT – 1,8643 AGE – 0,7043 SYSTEM_A – 1,4408 SYSTEM_B – 0,7036 INCOME_A – 0,5272 INCOME_B – 3,740"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Refianty Anggina
"Semakin tingginya tingkat kompetisi di dunia industri telah meningkatkan tuntutan dari konsumen terhadap suatu produk, baik itu produk manufaktur maupun produk jasa. Agar dapat bersaing dengan kompetitor dalam dan luar negeri, Bringin Life merasa perlu melakukan pengembangan pada sistem aplikasi asuransi yang biasa mereka gunakan menjadi sistem aplikasi asuransi yang berbasis Web untuk mempermudah pelaksanaan proses bisnisnya. Dalam melakukan pengembangan ini diperlukan perusahaan lain untuk membangun sistem tersebut. Terdapat 3 sistem aplikasi asuransi yang akan dikembangkan, yaitu sistem aplikasi asuransi Kesehatan, sistem aplikasi asuransi Non Kesehatan, sistem aplikasi asuransi Individu. Dalam memilih pemasok sistem aplikasi asuransi berbasis web ini Bringin Life perlu menggunakan framework baru dalam menentukan pemasok yang akan dipilih karena sebelumnya Bringin Life pernah melakukan kesalahan dalam memilih pemasok sistem aplikasi asuransi. Framework baru yang digunakan adalah dengan analisis Multivariat. Analisis Multivariat yang digunakan adalah analisis Conjoint dan analisis Multidimensional Scaling. Analisis Conjoint menghasilkan preferensi Bringin Life terhadap pemasok melalui penilaian kombinasi sejumlah atribut dan level pemilihan pemasok serta tingkat kepentingan relatif dari setiap atribut Setelah itu dilakukan analisis Multidimensional Scaling yang memetakan preferensi Bringin Life terhadap setiap pilihan pemasok secara visual ke dalam ruang multidimensional. Pemilihan pemasok kemudian dilakukan dengan melihat jarak euclidean terkecil setiap pemasok berdasarkan posisinya masing-masing dengan poin pemasok ideal yang diinginkan Bringin Life. Proses pemilihan pemasok ketiga sistem aplikasi asuransi berbasis web dilakukan secara terpisah sehingga akan didapatkan usulan pemasok mana yang akan dipilih oleh Bringin Life untuk setiap sistem aplikasi asuransi.

As competition in industrial world became higher, it has improved consumer's demand to a product, manufacture products and also service products. In order to compete with l_Cal and outside competitor, Bringin Life thinks that they need to develop their insurance application systems in to web based insurance application systems to make their business process run easier. Other companies are called for build these systems. There are three insurance application systems that need to be developed, which are Kesehatan insurance application system, Non Kesehatan insurance application system, and Individu insurance application system. In selecting vendor of this web based insurance application systems, Bringin Life need to use a new framework in determining which vendor to be selected because Bringin Life has done mistake in choosing vendor of insurance application systems previously. This new framework is conducted by Multrivariate analysis. Multivariate analysis used by are Conjoint analysis and Multidimensional Scaling analysis. Conjoint analysis will result on Bringin Life's preference to vendors through the assessment of combination of a number of attributes and levels used in vendor selection, and also the relative importance from each attribute. Following is conducted Multidimensional Scaling analysis which represents Bringin Life preferences to each alternative vendor visually into multidimensional space. Then vendor selection is done by seeing the smallest Euclidean distance based on every vendor's position to a point of ideal vendor which Bringin Life wants. Vendor selection process of these three web based insurance application systems are going to be carried out separately, so that will result on proposal which vendor should be selected by Bringin life for each insurance application system."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S50275
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>