Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 195960 dokumen yang sesuai dengan query
cover
Hendri Satria WD
"Particulate Matter (PM) merupakan material utama yang biasa digunakan untuk menunjukkan derajat polusi udara. Material PM yang terkandung pada polusi udara berdampak pada kesehatan manusia dan visibilitas atmosfer. Pengukuran gravimetri standar dan instrumen komersial saat ini untuk pengukuran lapangan masih mahal dan terbatas dibeberapa titik pengamatan yang tersebar di Indonesia. Pada penelitian ini dirancang sebuah instrumen ukur PM2.5 dan PM10 biaya rendah, dengan penerapan Internet of Things (IoT) sebagai pendukung monitoring secara real time yang dapat meningkatkan resolusi spasial dan temporal. Sistem menggunakan sensor ZH03A dengan komparasi yang menghasilkan korelasi yang sangat kuat diatas 0,75. Data sensor diproses oleh data logger yang terkoneksi dengan internet melalui modul ESP32 dengan 98 % data terkirim. Data hasil pantauan instrumen ditampilkan pada aplikasi web secara aktual dan dilengkapi dengan perhitungan komparasi sebagai representasi Urban Air Quality. Prediksi dengan metode LSTM menghasilkan nilai galat yang relatif kecil dibawah 35 dan korelasi diatas 0,50.

Particulate Matter (PM) is the main material commonly used to show the degree of air pollution. PM material contained in air pollution has an impact on human health and the visibility of the atmosphere. Standard gravimetric measurements and current commercial instruments for field measurements are still expensive and limited in several observation points spread across Indonesia. In this study, a low cost PM2.5 and PM10 measuring instrument was designed, with the application of the Internet of Things (IoT) as a support for real-time monitoring which can improve spatial and temporal resolution. The system uses a ZH03A sensor with comparisons that produce a very strong correlation above 0.75. Sensor data is processed by a data logger that is connected to the internet via the ESP32 module with 98% of the data sent. The data from the monitoring of the instrument is displayed on the web application in real time and is equipped with a comparison calculation as a representation of Urban Air Quality. Prediction using the LSTM method produces a relatively small error value below 35 and a correlation above 0.50."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Agita Devi Prastiwi
"Pertumbuhan Jakarta meluas secara spasial membentuk wilayah Jabodetabek. Seiring dengan pertumbuhan kota, ruang hijau digantikan dengan gedung dan jalan menghasilkan fenomena Urban Heat Island. Penelitian ini bertujuan untuk menganalisis distribusi spasial UHI, pola hubungan antara LST, NDVI dan NDBI serta memodelkan prediksi UHI dengan metode Long Short Term Memory (LSTM). LSTM adalah variasi RNN yang memiliki prinsip kerja dengan menyimpan informasi terhadap pola-pola data. Hasilnya distribusi spasial UHI arahnya cenderung kearah timur dan selatan Jakarta. Karakteristik wilayah terdampak fenomena UHI berada pada daerah pusat industri, pengembangan pemukiman, perekonomian, transportasi, pelayanan, serta perdagangan. Profil LST bervariasi berdasarkan jarak dan ketinggian elevasi. Fenomena UHI mampu menghangatkan suatu wilayah sebesar 10C dibandingkan suhu normalnya. Pola spasial UHI berpola random akibat mengikuti pola jaringan jalan yang menyebar secara tidak teratur. Hasil pembangunan model sistem prediksi UHI bulan Januari tahun 2021 – Oktober tahun 2022 didapatkan nilai indeks positive 4,3 – 7,1 ini menunjukan suhu di wilayah Jakarta lebih panas dibandingkan Bogor. Pada uji nilai akurasi didapatkan RMSE sebesar 1,65 dan MAE sebesar 2,73

akarta’s growth expanded spatially to the Jabodetabek area. As cities grow, green spaces replaced with buildings and roads, resulting in a temperature difference phenomenon known as Urban Heat Island. This study aims to analyze the occurrence of UHI, synthesize the relationship between LST, NDVI, and NDBI, and model temperature prediction using Long Short-Term Memory (LSTM) method. LSTM is a variation of RNN which has a working principle by storing information and data patterns. The result is that the spatial distribution of UHI tends to be towards east and south Jakarta. The characteristics of the area affected by UHI are areas that centers of industry, settlements, economy, transportation, services, and trade. The LST profile varies with distance and elevation. UHI phenomenon can warm an area by 1°C compared to the average temperature. The spatial pattern of UHI is random as a result of following a road network pattern that spreads irregularly. The results of the development of the UHI prediction system model for January 2021 - October 2022 obtained a positive index value of 4.30C – 7.10C, this shows that temperature in Jakarta always hotter than temperature in Bogor. Accuracy value test, RMSE was 1.65, and the MAE was 2.73."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Sabila Haqqi
"Banyak sekali variabel nonlinear didalam sistem kendali untuk quadcopter sehingga cukup rumit untuk mengendalikan dinamika penerbangan dari wahana ini. Salah satu metode yang digunakan untuk membangun model dinamik quadcopter adalah Deep Learning berbasis Long Short-Term Memory. Metode pembelajaran yang umum digunakan dalam melatih model adalah offline learning, dimana pelatihan dilakukan secara akumulatif berdasarkan dataset yang telah dimiliki. Walaupun offline learning memungkinkan model belajar lebih cepat, metode ini menghasilkan model yang kurang baik untuk wahana yang membutuhkan feedback dengan kompleksitas tinggi. Untuk menangani masalah tersebut akan dikembangkan metode online learning, dimana data diperoleh secara sekuensial dan digunakan untuk memperbarui model di setiap timestep. Akan ditunjukkan bahwa metode online learning dapat memperbaiki model yang diperoleh dari metode offline learning berdasarkan Mean Square Error dari setiap jenis data quadcopter.
..... There are so many nonlinear variables in the control system for the quadcopter so it is quite complicated to control the flight dynamics of this vehicle. One of the methods used to build a dynamic quadcopter model is Deep Learning based on Long Short-Term Memory. The learning method commonly used in training the model is offline learning, where training is carried out accumulatively based on the existing dataset. Although offline learning allows for faster learning models, this method results in poor models for vehicles that require high complexity feedback. To deal with this problem, an online learning method will be developed, where data is obtained sequentially and used to update the model at each time step. It will be shown that the online learning method can improve the model obtained from the offline learning method based on the Mean Square Error of each quadcopter data type."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Rafi Zhafran Wisnuwardana
"Jakarta merupakan ibukota Indonesia yang berfungsi sebagai pusat pemerintahan dan ekonomi, dimana urbanisasi menjadi masalah di Jakarta yang memiliki laju pertumbuhan penduduk yang mencapai 0,86% menurut Badan Pusat Statistik. Dengan pertumbuhan penduduk yang masih terus bertambah, pengelolaan sumber air menjadi aspek yang krusial dalam tata kota dan urban planning. Salah satu aspek utama dalam pengelolaan tersebut adalah mengelola hubungan curah hujan-limpasan permukaan pada daerah tersebut. Salah satu cara dalam pengelolaan tersebut adalah melalui metode pemodelan dimana metode ini dapat memberikan analisis secara mendalam serta kemampuannya dalam memprediksi yang berguna untuk pengelolaan sumber air. Terdapat berbagai cara dalam memodelkan hubungan curah hujan-limpasan permukaan dimana salah satunya adalah pemodelan berbasis data. Salah satu metode pemodelan tersebut adalah melalui deep learning dimana pada penelitian ini penulis mengunakan metode Long Short-term Memory (LSTM). Penelitian ini akan menggunakan LSTM sebagai alat untuk memodelkan data curah hujan dari tiga stasiun pengukuran dan data debit sungai dari tiga stasiun pengukuran dengan rentang waktu sepanjang 12 tahun (2009-2020). Hasil dari prediksi menunjukkan bahwa model LSTM memiliki performa yang buruk dalam dataset curah hujan dimana nilai R² tertinggi yang mencapai 0.09 dengan nilai MAE dan RMSE yang masing-masing berada pada 9,7 mm dan 18,14 mm. Performa pada dataset limpasan permukaan menunjukkan bahwa LSTM memiliki performa yang cukup baik dimana masing-masing rata-rata nilai R², MAE dan RMSE tertinggi berada pada 0,58, 4,15 m³/s dan 8 m³/s. Berdasarkan dari hasil evaluasi tersebut, penulis menyimpulkan bahwa meskipun dengan nilai akurasi yang rendah, model LSTM masih memiliki potensi untuk dikembangkan secara lebih lanjut apabila melihat nilai MAE dan RMSE yang berada pada kisaran yang cenderung lumayan sehingga LSTM dapat dikembangkan dengan penambahan data masukan.

Jakarta is a capital city which functioned as both a governmental and economic centre in Indonesia, which makes urbanization a problem in Jakarta, on which Jakarta itself has a population growth rate of 0.86% according to Statistic Indonesia. As Jakarta is still growing in terms of its population, managing water resources in the city is such a critical aspect of its urban planning. ­One of the key aspects of water resources management is managing the rainfall-runoff relationship in the area. One of the ways of managing it is through modelling the relationship itself which can give an in-depth analysis and its capability for forecasting which can be valuable in water resources management. Various approaches to modelling rainfall-runoff have been developed over the years, which data-driven modelling is one of them. One of the methods is through deep learning, which in this study we will use long short-term memory (LSTM) neural network. This study will use LSTM neural network as a tool to model 9 years (2009-2020) of rainfall data from three rain gauge stations and three discharge gauge stations to train the model. Results from the prediction shows that the LSTM model performed terribly on rainfall datasets, which the highest from the R² values are 0.09 with MAE and RMSE are on 9.7 mm and 18.4 respectively. Performance on runoff datasets shows that LSTM performed on a decent level, which mean from the R², MAE and RMSE are on 0.58, 4.15 m³/s and 8 m³/s respectively. Based on the evaluation results, author suggests that despite of its low level of accuracy, models based on LSTM still have some room for improvement based on their MAE and RMSE value that at least are on a respectable level shown that they could benefit from adding more data as an input for better performance of the model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Thariq Hadyan
"Quadcopter merupakan wahana terbang yang memiliki 4 rotor bersifat underactuated. Sifat quadcopter yang merupakan sistem yang kompleks akibat coupling antar variabelnya menjadikan desain pengendali yang cukup rumit. Diperlukan adanya pengendali yang mudah untuk dapat diaplikasikan pada quadcopter. Untuk melakukan percobaan pengaplikasian pengendali pada quadcopter, sistem pengendali tersebut harus dilakukan percobaan pada simulasi untuk mengetahui hasilnya. Oleh karena itu, peneliti mengusulkan pengendalian DIC yang berbasis deep neural networks (DNN) dan long-short term memory (LSTM) diujikan pada simulator sebelum akhirnya pada quadcopter asli. LSTM digunakan memiliki arsitektur pendukung untuk data sekuensial sebagaimana pergerakan trajektori. Sistem kendali dengan LSTM ini dihasilkan galat MSE yang lebih rendah dibanding DNN. Kinerja LSTM lebih baik dibandingkan dengan DNN. Selain itu, terdapat beberapa faktor – faktor terjadi peningkatan galat ketika diintegrasikan pada simulator Gazebo untuk bahan evaluasi terhadap pengendali berbasis yang sama diaplikasikan pada quadcopter aslinya.

Quadcopter is a flying vehicle that has 4 rotors that are underactuated. The nature of the quadcopter which is a complex system due to the coupling between the variables makes the controller design quite complicated. An easy controller is needed to be applied to the quadcopter. In order to experiment with the application of the controller on the quadcopter, the control system must be experimented with in a simulation to find out the results. Therefore, the researcher proposes that DIC control based on Deep Neural Network and Long-Short Term Memory be tested on a simulator before finally on a real quadcopter. LSTM is used to have a supporting architecture for sequential data as well as trajectory movement. The controller with this LSTM produces a lower MSE error than DNN. LSTM performance is better compared to DNN. In addition, there are several factors that increase the error when integrated into the simulator for evaluation of the same based controller applied to the original quadcopter."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sandyka Gunnisyah Putra
"Machine Learning (ML) dan Deep Learning merupakan bidang yang populer pada masa kini. Salah satu ranah tersebut yang menantang untuk diteliti adalah tentang mendeteksi emosi pada teks. Interaksi antara komputer dan manusia dapat menjadi lebih baik apabila komputer dapat mendeteksi emosi, menginterpretasikan emosi tersebut, dan memberikan umpan balik yang sesuai dengan apa yang manusia inginkan. Oleh karena itu, penelitian ini bertujuan untuk membuat sistem pendeteksi emosi pada teks Bahasa Indonesia. Pada penelitian ini, terdapat 2 macam algoritma Deep Learning yang digunakan, yaitu Convolutional Neural Network (CNN) dan Long Short-Term Memory (LSTM). Convolutional Neural Network merupakan salah satu algoritma Deep Learning dimana karakteristik utamanya menggunakan operasi matriks konvolusi. Long ShortTerm Memory merupakan salah satu algoritma Deep Learning dimana merupakan perkembangan dari algoritma Recurrent Neural Network (RNN). Kedua algoritma tersebut akan didukung dengan Word Embedding Bahasa Indonesia dari fastText dan Polyglot. Package text2emotion akan digunakan sebagai data tambahan untuk evaluasi. Input dataset yang digunakan untuk Deep Learning adalah dataset cerita dongeng yang memiliki emosi "Senang", "Sedih", "Marah", "Takut", "Terkejut", dan "Jijik". Input dataset tersebut akan melalui tahap preprocessing berupa Case Normalization, Stopword Removal, Stemming, Tokenizer, dan Padding. Setelah itu, proses training dijalankan dengan menggunakan RandomizedSearchCV sebagai hyperparameter tuning. Hasil akan dibandingkan dan dianalisis berdasarkan nilai Evaluation Metrics Accuracy, Precision, Recall, dan F1-Score. Sistem berhasil dirancang dengan mencapai hasil Accuracy sebesar 91,60%, Precision sebesar 92,48%, Recall sebesar 91,60%, dan F1- Score sebesar 91,68%.

Machine Learning (ML) and Deep Learning is a popular region to be used right now. One of the scopes that challenging to research is about emotion recognition on text. Interaction between computer and human can be better if the computer can recognize the emotion, interpret it, and giving a suitable feedback with the human’s need. Therefore, this research has goal to make an emotion recognition on Indonesian text language. On this research, there’s 2 kind of Deep Learning algorithm that used, that is Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). Convolutional Neural Network is one of Deep Learning algorithm that its main characteristic is using convolution matrix operation. Long Short-Term Memory is one of Deep Learning algorithm which is an improvement from Recurrent Neural Network (RNN) algorithm. Both algorithms will be supported with Indonesian Word Embedding from fastText and Polyglot. Text2emotion package is used for additional data for evaluation. The input dataset that will be used on this Deep Learning is a fairy tale dataset which have “Happy”, “Sad”, “Anger”, “Fear”, “Surprised”, and “Disgust” emotion. That input dataset will be passed to preprocessing stage that consist of Case Normalization, Stop-word Removal, Stemming, Tokenizer, and Padding. After that, training process started with using RandomizedSearchCV as hyperparameter tuning. The result will be compared and analyzed based on Accuracy, Precision, Recall, and F1- Score Evaluation Metrics. System is made with reaching 91.60% Accuracy, 92,48% Precision, 91,60% Recall, and 91,68% F1-Score."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ian Lord Perdana
"Meningkatnya jumlah investor dari tahun ke tahun di pasar modal berbagai negara mengakibatkan proses pengambilan keputusan dalam membeli saham menjadi salah satu hal yang penting. Tahapan ini merupakan tahapan yang penting karena akan memengaruhi tingkat kekayaan atau pendapatan yang akan diterima oleh seorang investor. Dalam membantu proses pemilihan saham tersebut, seorang investor dapat menggunakan analisa teknikal atau analisa fundamental dalam prosesnya. Namun seiring dengan perkembangan teknologi dan juga kemudahan dalam mengakses data harga indeks saham, maka proses prediksi selanjutnya dapat dilakukan dengan menggunakan analisis big data dalam prosesnya. Penelitian ini akan dilakukan proses prediksi indeks harga saham dengan menggunakan ARIMA dan juga algoritma Long Short-Term Memory untuk pengolahan datanya dan metode web scraping untuk metode pengumpulan data harga indeks saham. Hasil dari penelitian menunjukkan nilai MAPE 1.243% untuk indeks JKSE, 1.005% untuk indeks KLSE, 1.923% untuk indeks PSEI, 1.523% untuk indeks SET.BK dan 3.7944% untuk indeks STI.

The increasing number of investors from year to year in the capital markets of various countries has made the decision-making process in buying shares become one of the essential things. This stage is crucial because it will affect the level of wealth or income that an investor will receive. In helping the stock selection process, an investor can use technical analysis or fundamental analysis. However, along with technological developments and the ease of accessing stock index price data, the next prediction process can be carried out using big data analysis. This research will carry out the stock price index prediction process using ARIMA and the Long Short-Term Memory algorithm for data processing and web scraping methods for stock index price data collection methods. The study results showed that the MAPE value was 1.243% for the JKSE index, 1.005% for the KLSE index, 1.923% for the PSEI index, 1.523% for the SET.BK index and 3.7944% for the STI index."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sulthan Ali Pasha
"Saham merupakan salah satu surat berharga yang diterbitkan dan dijual oleh perusahaan,
yang telah memenuhi syarat, di Bursa Efek Indonesia. Prinsip dasar yang dimiliki oleh
saham adalah High Risk High Reward, yang menggambarkan bahwa saham memang
dapat memiliki hasil yang besar, namun memiliki risiko yang tinggi pula. Dengan
prinsip High Risk High Reward, tentunya para investor harus lebih hati-hati dalam
menentukan langkah yang akan mereka lakukan. Salah satu cara yang dapat digunakan
untuk mengurangi risiko, yaitu melakukan prediksi tren harga saham menggunakan
Machine Learning. Menggunakan data historis saham pada Bursa Efek Indonesia,
yaitu open, high, low, dan close price, algoritma Machine Learning dapat melakukan
prediksi tren harga saham yang selanjutnya akan digunakan sebagai strategi investasi
para investor. Terdapat banyak metode Machine Learning yang dapat digunakan untuk
melakukan prediksi, salah satu metode yang dapat digunakan adalah Recurrent Neural
Network yaitu Long Short Term Memory (LSTM). Pada metode LSTM, data historis
harga saham akan dibawa ke depan melalui seluruh gerbang LSTM yaitu: Forget
Gate, Input Gate, dan Output Gate. Selanjutnya akan dicari nilai loss dari model,
setelah didapat nilai loss, model akan ditinjau kembali setiap tahapannya, dimulai dari
belakang. Langkah pengulangan tesebut dilakukan agar mendapat variabel Weight dan
Bias yang optimal. Kemudian, tingkat akurasi dari metode tersebut akan ditentukan
menggunakan: Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE).
Penelitian ini menggunakan data historis perusahaan yang termasuk pada Indeks LQ45
dan dapat diambil melalui website, finance.yahoo.com. Dari penelitian ini, diketahui
bahwa, masing-masing masalah memiliki model terbaiknya, untuk penyelesaian masalah
tersebut.

Stock is a part of ownership of a company, that have fulfill the requirement to be sold at
Bursa Efek Indonesia. The basic principal of stock market is High Risk High Reward,
which describe that stock market indeed have a chance to get a great profit, but it also
come with a high risk. This principal is the reason that all investor must be cautious in
deciding their move. There’s many method to do this, with one of the being, forecasting
the stock market trend with machine learning. With the historical data, that include
open, high, low, dan close price, the machine learning algorithm, could forecast the stock
market direction for the next days, which will be one of the deciding factor for investor to
choose their move. Nowadays, there’s many machine learning method that can be used to
forecast, one of them is the branch method of Recurrent Neural Network, which is, Long
Short Term Memory (LSTM). LSTM use the historical data, and bring them forward to,
Forget Gate, Input Gate, Memory State, Output Gate. Then the loss value of the model
will be calculated. After all the process the model will be re-evaluated. The re-evaluation
step is to update all the weights and biases in the model. Then the accuracy of the model
will be evaluated with Root Mean Squared Error (RMSE) and Mean Absolute Error
(MAE). This study uses the historical data of the companys that’s included in the index
LQ45, and the data is taken from the website, finance.yahoo.com. From this research, it
is known that every problem has their own preference model to solve.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Zufar Rafif
"Komunikasi yang efektif sangat penting untuk penyediaan layanan kesehatan yang berkualitas. Di rumah sakit, pasien yang kemampuan komunikasinya terbatas secara fisik mungkin menghadapi tantangan dalam mengungkapkan kebutuhan dasar mereka kepada penyedia layanan kesehatan. Untuk mengatasi masalah ini, dalam penelitian ini dikembangkan sistem pengenalan isyarat tangan untuk pasien dengan keterbatasan fisik. Sistem ini menggunakan Mediapipe dan long short-term memory (LSTM) model untuk mendeteksi dan mengklasifikasi 24 kelas isyarat tangan. Isyarat tangan untuk pasien yang digunakan berdasarkan kartu single hand sign communication, yang dibuat oleh Derek Tune, seorang intrepeter bahasa isyarat pada tahun 2012. Akuisisi data hand landmark dalam bentuk video sepanjang 10 frame untuk setiap kelas isyarat tangan, yang kemudian diolah dan dianalisis menggunakan model LSTM. Model LSTM dilatih menggunakan teknik early stopping untuk mendapatkan performa optimal, menghasilkan tingkat akurasi model 85,53% dengan presisi 0,911. Model dapat mendeteksi isyarat tangan secara waktu nyata dengan waktu inferensi 130 milidetik. Sistem ini juga dirancang untuk mengirim pesan notifikasi secara otomatis ke penyedia layanan kesehatan melalui bot Telegram. Secara keseluruhan, sistem pengenalan isyarat tangan pasien memiliki potensi untuk meningkatkan komunikasi antara pasien dan penyedia layanan kesehatan dan memungkinkan pasien penyandang disabilitas untuk lebih mudah memenuhi kebutuhan dasar mereka.

Effective communication is essential to provide quality health services. In hospitals, patients with physically limited communication skills may face challenges expressing their basic needs to health care providers. To overcome this problem, this research developed a hand signal recognition system for patients with physical limitations. This system uses the Mediapipe model and long shortterm memory (LSTM) to detect and classify 24 classes of hand signals. Hand signals for patients used are based on the single hand sign communication card, which was made by Derek Tune, a sign language interpreter in 2012. Acquisition of hand landmark data in the form of a 10-frame video for each hand signal class, which is then processed and analyzed using LSTM models. The LSTM model minimizes using early stopping techniques to get optimal performance, resulting in a model accuracy rate of 85.53% with a precision of 0.911. The model can detect real-time hand signals with an inference time of 130 milliseconds. The system is also designed to automatically send message notifications to healthcare providers via Telegram bots. Overall, patient hand signal recognition systems have the potential to improve communication between patients and healthcare providers and enable patients with disabilities to meet their basic needs more easily."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>