Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 72319 dokumen yang sesuai dengan query
cover
Giovanni Abel Christian
"Warung kopi atau coffee shop kian mengalami peningkatan dalam tren dan permintaan di Indonesia. Pandemi Covid-19 membuat pemberlakuan pembatasan sosial yang membuat penjualan dan permintaan menjadi susah diprediksi sehingga pengelolaan stok biji kopi menjadi masalah. Melakukan peprediksi menggunakan model machine learning dapat menjadi solusi untuk mengatasi masalah tersebut. Data yang digunakan adalah permintaan biji kopi yang didapatkan dari sistem POS (Point-of-Sales). Untuk membuat performa model yang lebih baik, ditambahkan beberapa variabel eksternal seperti cuaca, hari raya dan pembatasan sosial. Model prediksi yang digunakan adalah Multiple Linear Regression (MLR), Decision Tree (DT), Support Vector Regressor (SVR) dan Neural Network (NN). Hasil pelatihan model menunjukan model-model yang menggunakan semua variabel menghasilkan hasil prediksi yang lebih baik dibandingkan dengan model-model dengan menggunakan hanya variabel tanggal. Model DT menunjukan hasil prediksi yang terbaik berdasarkan pola prediksi dan error yang dihasilkan. Implementasi hasil prediksi dapat diterapkan dengan perhitungan Reorder Point (ROP) yang ditampilkan dalam dashboard, Expected Value Analysis untuk penentuan tingkat pemesanan, danpencatatan pemesanan bahan baku untuk perkiraan biaya yang dibutuhkan dihitung menggunakan metode FIFO (First in First Out).

The trend of Coffee shops in Indonesia keeps increasing as well as its. COVID-19 pandemic has caused the establishment of social restriction which creates hindrance in predicting the sales and demand, as a result disrupts the coffee beans inventory management. Forecasting using machine learning models could offer a solution to overcome those problems. The data used in this research is the coffee beans demand from POS (Point-of-Sales) system. Various external variables such as weather, event and social restrictions are added to increase model performance. Predictions models used are Multiple Linear Regression (MLR), Decision Tree (DT), Support Vector Regressor (SVR) and Neural Network (NN). The result of model training shows that models that use all variables produce better prediction than models that use date variables only. DT model generates the best prediction based on its pattern and error measurement. The prediction result from the chosen model is implemented to calculate the Reorder Point (ROP)  and visualized using  dashboard, Expected Value Analysis to determine the stock level estimation. Subsequently, material stock register calculated using FIFO (First in First Out). "
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Annisa Cipta Nabila
"Permasalahan penyimpanan pasti dihadapi oleh semua instansi, terutama perusahaan yang melakukan produksi. Untuk menyelesaikan permasalahan yang ada, perusahaan menggunakan berbagai macam metode dalam manajemen penyimpanan (inventory management). Salah satunya adalah metode Economic Order Quantity (EOQ). Namun demand (permintaan) dalam metode EOQ dianggap konstan berdasarkan asumsi dalam metode EOQ. Pada kenyataannya permintaan terhadap barang tidak selalu sama setiap waktunya. Oleh dari itu, dalam penelitian ini dilakukan peramalan permintaan dengan menggunakan model peramalan Zhang’s Hybrid yang menggabungkan metode Autoregressive Integrated Moving Average atau ARIMA untuk menggambarkan bagian linear dan Artificial Neural Network untuk menggambarkan bagian nonlinear dari data permintaan. Hasil dari peramalan selanjutnya akan digunakan dalam metode EOQ untuk mendapatkan optimal quantity order dan optimal reordering level. Penelitian ini akan menunjukkan algoritma dan proses penyelesaian permasalahan inventory dengan menerapkan model Zhang’s hybrid untuk peramalan permintaan dalam metode EOQ dengan output berupa optimal quantity order dan optimal reordering level yang ditunjukkan melalui simulasi menggunakan data historis inventory.

Every instance in several sectors will face inventory problems, especially for company in production sector. To solve the inventory problems, the company will do several methods in inventory management. One of the method that usually used to solve inventory problem is Economic Order Quantity (EOQ) method. By standard EOQ assumption, the demand is set to be constant, while in the fact the demand is variative by time. Therefore, this study will use Zhang’s Hybrid Method for demand forecasting that use ARIMA to describe the linear part and use Artificial Neural Network to describe the nonlinear part of the data. The outcome from the method is used as demand for EOQ process to find the optimal quantity order and the optimal reordering level. The study provide solving algorithm and show how to apply Zhang’s hybrid model in demand forecasting for EOQ, the output of the process are optimal quantity order and the optimal reordering level. To understand more about the process, the algorithm are simulated using real historical inventory data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Ratna Aminah
"ABSTRAK
<

Diabetes merupakan penyakit kronis yang terjadi ketika terdapat peningkatan kadar glukosa dalam darah karena tubuh tidak dapat atau tidak cukup menghasilkan hormon insulin atau tidak dapat menggunakan insulin secara efektif. Umumnya untuk mendeteksi penyakit diabetes adalah dengan tes kadar gula darah atau hemoglobin HbA1c yang dilakukan oleh praktisi medis. Pada penelitian ini, dibangun sistem prediksi penyakit diabetes berbasis iridologi atau melalui citra mata, menggunakan machine learning. Sistem yang dikembangkan terdiri dari instrumen akuisisi citra mata dan algoritma pengolahan citra. Metode GLCM (Gray Level Co-Occurence Matrix) digunakan untuk proses ekstraksi ciri, dengan tujuan untuk mendapatkan ciri tekstur pada citra. Metode SVM (Support Vector Machine) dan kNN (k Nearest Neighbor) digunakan untuk proses klasifikasi kelas diabetes dan non-diabetes. Hasil klasifikasi kemudian dilakukan proses validasi dengan menggunakan metode k-fold cross validation. Hasil yang diperoleh menunjukkan bahwa metode kNN memiliki performa yang lebih baik dibandingkan dengan metode SVM. Performa terbaik didapatkan saat variasi kombinasi ukuran area segmentasi 30×360 dengan jarak antar tetangga 30 pixel. Tingkat akurasi yang diapatkan dari pengujian sebesar 79,6%, dengan nilai misclassification rate (MR) 20,4%, false positive rate (FPR) 20,6%, false negative rate (FNR) 20%, sensitivity 87,1%, dan specificity 70,0%.

 


ABSTRACT

Diabetes is a chronic disease that occurs when there is an increase in glucose levels in the blood because the body cannot produce enough of the hormone insulin or cannot use insulin effectively. Generally, to detect diabetes is by pengujian blood sugar levels or hemoglobin HbA1c carried out by medical practitioners. In this study, a diabetes prediction system based on iridology or through eye images was constructed using machine learning. The developed system consists of eye image acquisition instruments and image processing algorithms. The GLCM (Gray Level Co-Occurence Matrix) method is used for feature extraction processes, with the aim of obtaining texture characteristics in the image. The SVM (Support Vector Machine) and kNN (k Nearest Neighbor) methods are used to classify diabetic and non-diabetic classes. The classification results are then validated by using the k-fold cross validation method. The results show that kNN method has better performance compared to the SVM method. The best performance is when size of the segmentation area 30×360 pixel with the distance between neighbors 20 pixel. The results show that the accuracy from pengujian is 79.6%, misclassification rate (MR) 20.4%, false positive rate (FPR) 20.6%, false negative rate (FNR) 20.0%, sensitivity 87.1%, and specificity 70.0%.

 

"
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shafy Satria Gusta Basuki
"Stunting adalah salah satu masalah gizi yang mengganggu perkembangan pada anak yang diakibatkan oleh asupan gizi buruk pada masa pertumbuhannya. Indonesia tergolong sebagai negara dengan prevalensi stunting yang tinggi dengan angka sebesar 30.8% untuk anak Balita dan 29.9% untuk anak Baduta berdasarkan hasil Riskesdas 2018. Berdasarkan penelitian yang dilakukan oleh Balitbangkes, stunting terbukti membahayakan garis keturunan. Bayi dengan kondisi stunting membuat pertumbuhan dan perkembangan terhambat dan juga membuka resiko terhadap menderita penyakit tidak menular seperti diabetes mellitus pada saat dewasa. Jika bayi stunting perempuan tumbuh besar sehingga menjadi ibu, maka ibu tersebut akan melahirkan bayi stunting lagi dan mengakibatkan kondisi stunting lintas generasi. Dalam skripsi ini, pemodelan sistem prediksi stunting memanfaatkan metode machine learning berdasarkan data sekunder dari Indonesian Family Life survey (IFLS) tahun 2014-2015. Pemodelan dilakukan menggunakan bahasa pemrograman Python. Dilakukan pre-processing dengan metode yang berbeda-beda, yaitu Principal Component Analysis (PCA) dan 3 jenis Feature Selection: Filter, Wrapper, dan Embedded. Ketidakseimbangan dataset ditangani dengan metode SMOTE. Dilakukan pemisahan data menjadi training set dan testing set dengan pembagian 80:20 masing-masing. Kemudian beberapa algoritma model machine learning diujikan untuk mengetahui kemampuan prediksinya untuk setiap metode pre-processing. Hasil penelitian menunjukan bahwa setidaknya 1 dari 4 model untuk tiap metode pre-processing memiliki kemampuan yang baik dengan menunjukan nilai metrik dan AUC di atas 0,8. PCA dengan Decision Tree Classifier menunjukan akurasi 85% dan AUC 0,849. Feature Selection–Wrapper dengan SVC menunjukan akurasi 98% dan AUC 0,981. Feature Selection-Filter menunjukan akurasi 98% dan AUC 0,979. Feature Selection–menunjukan akurasi 84% dan AUC 0,844. Hal ini menjadikan kombinasi algoritma terbaik dalam penelitian ini adalah metode pre-processing Feature Selection–Wrapper dengan model machine learning SVC.

Stunting is one of the nutritional problems that interfere with development in children caused by poor nutritional intake during their growth period. Indonesia is classified as a country with a high prevalence of stunting with a figure of 30.8% for under-five children and 29.9% for under-two children based on the results of Riskesdas 2018. Based on research conducted by Balitbangkes, stunting has proven to endanger lineage. Babies with stunting conditions would have their growth and development stunted and also open the risk of suffering from non-communicable diseases such as diabetes mellitus in adulthood. If the female stunting baby grows up to become a mother, then the mother will give birth to another stunting baby and results in cross-generational stunting conditions. In this bachelor’s thesis, the stunting prediction system modeling utilizes machine learning methods based on secondary data from the 2014-2015 Indonesian Family Life Survey (IFLS). The modeling is carried out using the Python programming language. Pre-processing is carried out with different methods, namely Principal Component Analysis (PCA) and 3 types of Feature Selections: Filter, Wrapper, and Embedded. Dataset imbalance is handled by the SMOTE method. Separate the data into training sets and testing sets with a distribution of 80:20 each. Then several machine learning model algorithms were tested to determine their predictive ability for each pre-processing method. The results showed that at least 1 of the 4 models for each pre-processing method had a good ability indicated by the metric and AUC values ​​above 0.8. PCA with Decision Tree Classifier shows an accuracy of 85% and AUC 0.849. Feature Selection–Wrapper with SVC showed 98% accuracy and AUC 0.981. Feature Selection–Filter shows 98% accuracy and AUC 0.979. Feature Selection–Embedded shows an accuracy of 84% and AUC 0.844. The result shows that best combination of algorithms in this study is the Feature Selection–Wrapper pre-processing method with the SVC machine learning model."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dea Amrializzia
"Pipa transmisi adalah cara teraman dan paling efektif untuk mengangkut gas alam dalam jumlah besar dalam jarak jauh. Meskipun transportasi menggunakan pipa adalah yang paling aman, kegagalan pipa transmisi dapat menyebabkan kerusakan, kerugian finansial, dan cedera. Kegagalan pipa perlu diprediksi untuk untuk menentukan prioritas pemeliharaan pipa sebagai salah satu strategi membuat jadwal pemeliharaan prefentif yang tepat sasaran dan efisien agar pipa dapat diperbarui atau direhabilitasi pipa sebelum terjadi kegagalan. Metode yang ditawarkan pada studi ini adalah machine learning, dimana metode merupakan bagian dari insiatif transformasi digital (Hajisadeh, 2019). Model dikembangkan berdasarkan data kegagalan historis dari jaringan pipa transmisi gas darat sekitar 2010-2020 yang dirilis oleh Departemen Transportasi AS dengan karakteristik data yang tidak terstruktur dan kompleks. Proses pembelajaran mesin dapat dibagi menjadi beberapa langkah: pra-pemrosesan data, pelatihan model, pengujian model, pengukuran kinerja, dan prediksi kegagalan. Pengembangan model pada studi ini dilakukan menggunakan dua algoritma yaitu regresi logistik dan random forest. Pola perilaku dari faktor-faktor yang paling berpengaruh adalah usia dan panjang segmen pipa meiliki korelasi positif terhadap kegagalan pipa. Kedalaman pipa, ketebalan, dan diameter pipa memiliki korelasi negatif. Kegagalan pipa paling sering terjadi pada pipa dengan class location 1 dan class location 4, pipa yang ditempatkan di bawah tanah, serta pipa dengan tipe pelapis coal tar. Hasil pengembangan model menggunakan machine learning menunjukan hasil performa model akurasi prediksi 0.949 dan AUC 0.950 untuk model dengan algoritma regresi logistik. Sedangkan akurasi prediksi 0.913 dan AUC 0.916 untuk model dengan algoritma random forest. Berdasrkan hasil uji performa kita dapat menyimpulkan bahwa machine learning adalah metode yang efektif untuk memprediksi kegagalan pipa. Berdasarkan model yang dilatih pada dataset nyata pipa transmisi gas, hasil prediksi pada studi kasus dapat menghindari 29% dari kegagalan pipa pada 2025, 53% kegagalan pipa pada tahun 2030, dan 64% pada tahun 2035.

Transmission pipe is the safest and most effective way to transport large amounts of natural gas over long distances. Although transportation using pipelines is the safest, transmission pipeline failures can cause damage, financial losses, and injuries. Pipeline failures need to be predicted to determine the priority of pipeline maintenance as one of the strategies to create a schedule of maintenance targets that is right on target and efficient so that the pipeline can be rehabilitated before a failure occur. The method offered in this study is machine learning, where the method is part of the digital transformation initiative (Hajisadeh, 2019). The model was developed based on historical failure data from the onshore gas transmission pipeline around 2010-2020 released by the US Department of Transportation with unstructured and complex data characteristics. The machine learning process can be divided into several steps: data pre-processing, model training, model testing, performance measurement, and failure prediction. The development of the model in this study was carried out using two algorithms namely logistic regression and random forest. The correaltion of the factors that most influence the failure of an onshore gas transmission pipeline is the age and length of the pipe segment has a positive correlation with pipe failure. Depth of cover, thickness, and diameter of pipes have a negative correlation with pipe failures. Pipe failures most often occur in pipes with class location 1 and class location 4, undersoil, and pipes with coal tar coating types. The results of the development of the model using machine learning showed the results of the model performance prediction accuracy is 0.949 and AUC is 0.950 for models with logistic regression algorithms. Whereas the accuracy of prediction is 0.913 and AUC is 0.916 for models using the random forest algorithm. Based on the results of performance tests we can conclude that machine learning is an effective method for predicting pipe failures. Based on the model trained on a real dataset of gas transmission pipelines, the prediction results in case studies can avoid 29% of pipe failures in 2025, 53% of pipe failures in 2030, and 64% in 2035. "
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Henry Prayoga
"Penelitian ini menganalisis akurasi peramalan permintaan produk barang konsumsi cepat (FMCG) menggunakan model Machine Learning, yaitu LSTM (Long Short-Term Memory) dan SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), dengan data sekunder dari April 2021 hingga April 2024 yang terdiri dari 36 observasi bulanan. Variabel dependen adalah total penjualan, sementara variabel eksogen mencakup pengeluaran per kapita, adopsi produk, proporsi penjualan dari promosi, jumlah toko yang menjual produk, dan pangsa pasar produk. Hasil menunjukkan model LSTM memiliki akurasi lebih tinggi dalam memprediksi nilai penjualan dibandingkan SARIMAX, dengan nilai Mean Absolute Percentage Error (MAPE) yang lebih rendah pada sebagian besar sampel. Analisis korelasi mengungkapkan variabel jumlah toko yang menjual produk dan adopsi produk berpengaruh signifikan terhadap nilai penjualan dalam model LSTM, sedangkan SARIMAX unggul dalam menangkap pola musiman namun memiliki MAPE lebih tinggi. Penelitian ini menyarankan penggunaan model LSTM untuk data time series yang kompleks dan tidak stasioner, sementara SARIMAX lebih cocok untuk data dengan komponen musiman yang kuat. Pemilihan model harus mempertimbangkan karakteristik data dan tujuan analisis.

This study analyzes the forecasting accuracy of fast-moving consumer goods (FMCG) demand using Machine Learning models, namely LSTM (Long Short-Term Memory) and SARIMAX (Seasonal AutoRegressive Integrated Moving Average with eXogenous regressors), utilizing secondary data from April 2021 to April 2024 with a total of 36 monthly observations. The dependent variable is sales value, while the exogenous variables include spend per buyer, product penetration, promo % of value, the number of stores selling, and market share. The results indicate that the LSTM model has higher accuracy in predicting sales value compared to the SARIMAX model, with a lower Mean Absolute Percentage Error (MAPE) for most samples. Correlation analysis reveals that the variables number of stores selling and product penetration significantly influence sales value in the LSTM model, whereas SARIMAX excels in capturing seasonal patterns but has a higher MAPE. This study recommends using the LSTM model for complex and non-stationary time series data, while SARIMAX is more suitable for data with strong seasonal components. Model selection should consider the characteristics of the data and the objectives of the analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Josephine
"Salah satu metode yang digunakan untuk mendeteksi kadar kolesterol seseorang adalah dengan mengambil sejumlah darah untuk diuji. Namun, hal tersebut dapat membuat sejumlah orang merasa kurang nyaman. Oleh karena itu, metode pegukuran bersifat tidak merusak dibuat dan mengalami perkembangan yang pesat. Salah satu metode bersifat tidak merusak yang ditemukan adalah dengan menggunakan Iridologi. Fokus pada penelitian ini adalah perancangan sistem untuk memprediksi kelas kolesterol seseorang melalui citra iris. Kondisi kesehatan setiap organ dan jaringan pada tubuh dapat dilihat melalui iris. Hal tersebut dapat dimanfaatkan untuk memprediksi kelas kolesterol seseorang. Sistem yang dibuat terdiri dari instrument yang berfungsi untuk meng-akuisisi citra iris dan algoritma pengolahan citra yang berbasis ciri tekstur. Pemrosesan yang dilakukan pada citra iris adalah peningkatan kualitas dengan metode penyaringan Fast Fourier Transfor, dan mengubah citra menjadi keabuan, lokalisasi, normalisasi dan segmentasi 30% terluar dari citra iris. Metode ekstraksi ciri yang digunakan pada penelitian ini adalah Gray Level Co-occurance Matrix dengan jarak tetangga sebesar 45%, 65% dan 90%. Model klasifikasi terbaik dengan menggunakan MLP dapat mengklasifikasi kelas kolesterol tinggi dan kolesterol normal dengan K-fold cross validation dengan akurasi sebesar 86,67%, misclassification rate (MR) sebesar 13,33%, false positive rate (FPR) sebesar 9,09%, dan false negative rate (FNR) sebesar 25%.

One of the methods to detect the rate of cholesterol levels, is to extract a certain amount of blood from a subject’s body, which will then be tested. However, these practices has been deemed by a substantial amount of individuals or groups to be an uncomfortable procedure. These unpleasant reactions are the reason for the manufacturing and improvement of another measuring method, which is considerably less invasive. It is called Iridology, where the study or predictions of one’s cholesterol levels are based on one’s iris image. The method is developed further on an acquisition instrument and image processing algorithm, which are both based on an image texture factor. The pre-processing that are applied to the image are quality enhancement with an FFT filtering method and the transformation into a grayscale image, which are then localized, normalized, and segmented by 30% outlying the iris image. The extraction method applied in this study is the Gray Level Co-occurance Matrix with a neighbouring distance of 45%, 65%, and 90%. The Multilayer Perceptron Model is used to categorize different classes of both normal and high cholesterol levels with K-fold cross validation to produce an accuracy rate of 86,67%, misclassification rate (MR) of 13,33%, false positive rate (FPR) of 9,09%, and false negative rate (FNR) of 25%. These established rates proves that the alternative method is able to classifying an individual’s cholesterol levels in a less invasive manner."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rashifa Khairani Setianegara
"Curah hujan mempunyai dampak yang signifikan terhadap berbagai sektor kehidupan dan lingkungan. Misalnya, curah hujan membantu meningkatkan produktivitas pertanian, menjamin cadangan pangan dan air. Selain itu, curah hujan juga mempengaruhi kekeringan dan siklus air tanah. Oleh karena itu, mengetahui cara memperkirakan curah hujan di suatu daerah secara akurat sangat penting. Salah satu cara memperkirakan curah hujan adalah dengan menggunakan radar cuaca yang mengukur nilai reflektivitas, kemudian menggunakan persamaan Z-R untuk menghitung curah hujan yang terjadi. Namun, beberapa penelitian sebelumnya telah menggunakan model estimasi curah hujan kuantitatif dengan machine learning dari data radar hujan karena dapat memberikan prediksi yang lebih akurat dibandingkan persamaan Z-R. penelitian lain menyatakan bahwa gradient boosting menghasilkan estimasi curah hujan yang lebih akurat dibandingkan beberapa algoritma lainnya. Pada penelitian ini, estimasi curah hujan dilakukan pada satu wilayah dengan tipe curah hujan lokal di Kota Gorontalo. Estimasi ini dilakukan dengan membandingkan keakuratan dua metode: persamaan Z-R dan algoritma machine learning. Persamaan Z-R yang digunakan adalah persamaan Z-R oleh Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) dan Rosenfeld (𝐴 = 250, 𝑏 = 1.2), sedangkan algoritma machine learning yang digunakan adalah gradient boosting. Hasil perbandingan menunjukkan bahwa gradient boosting memberikan estimasi yang lebih akurat dibandingkan dengan kedua persamaan Z-R tersebut. Hasil estimasi algoritma gradient boosting memberikan nilai RMSE, MAE, dan R 2 masing-masing sebesar 0,61, 0,17, dan 0,86. Persamaan Marshall-Palmer Z-R menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,14, 3,66, dan -0,19. Estimasi persamaan Z-R Rosenfeld menghasilkan nilai RMSE, MAE, dan R 2 sebesar 8,18, 3,71, dan -0,20. Dari ketiga metrik tersebut, dapat disimpulkan bahwa gradient boosting memberikan estimasi yang paling akurat untuk curah hujan di wilayah dengan tipe hujan lokal di Kota Gorontalo.

Rainfall has a significant impact on various sectors of life and the environment. For example, rainfall helps increase productivity in agriculture, ensuring food reserves and water. In addition, rainfall also affects drought and the soil water cycle. Therefore, knowing how to estimate rainfall in an area accurately is essential. One way to estimate rainfall is to use a weather radar that measures reflectivity values, then use the Z-R equation to calculate the rainfall that occurs. However, Several previous studies have used machine learning quantitative rainfall estimation models from rain radar data because it can provide more accurate predictions than the Z-R equation. Another study state that gradient boosting provides more accurate rainfall estimation than several other algorithms. In this study, rainfall estimation was carried out in an area with local rainfall types in Gorontalo City. This estimation is done by comparing the accuracy of two methods: the Z-R equation and machine learning algorithms. The Z-R equation used is the Z-R Equation by Marshall-Palmer (𝐴 = 200, 𝑏 = 1.6) and Rosenfeld (𝐴 = 250, 𝑏 = 1.2), while the machine learning algorithm used is gradient boosting. The comparison results show that gradient boosting provides a more accurate estimation than the two ZR equations. The gradient boosting algorithm estimation results provide RMSE, MAE, and R 2 values of 0.61, 0.17 and 0.86, respectively. The Marshall-Palmer Z-R equation obtained RMSE, MAE, and R 2 values of 8.14, 3.66, and -0.19. The estimation of Rosenfeld's Z-R equation resulted in RMSE, MAE, and R 2 values of 8.18, 3.71, and - 0.20. From these three metrics, it is concluded that gradient boosting provides the most accurate estimate for rainfall in areas with localized rainfall types in Gorontalo City."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wagener, Albert M.
Princeton: D. Van Nostrand, 1950
621.9 WAG m
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>