Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127258 dokumen yang sesuai dengan query
cover
Alma Setiana Khoirunnisa
"Pada penelitian ini telah dilakukan sintesis ZnO nanorods (NR) 4 jam dan ZnO nanotubes (NT) dengan variasi waktu self-etching 18 jam dan 22 jam dan diapikasikan sebagai devais detektor UV 365 nm. Nanomaterial ini telah disintesis menggunakan metode ultrasonic spray pyrolysis (USP) dan hydrothermal. ZnO NT telah berhasil disintesis melalui proses self-etching ZnO NR yang tidak mengalami perubahan fasa kristal, parameter kisi maupun energi band gap. Namun demikian ZnO NT yang dihasilkan memiliki lebih banyak cacat kristal yang diindikasikan dengan kurva absorbansi optik yang lebih lebar pada daerah cahaya tampak. Hal ini menyebabkan penurunan photocurrent yang lebih tinggi daripada penuruan dark current , yang menyebabkan penurunan kinerja fotodetektor UV. Nilai sensitivitas ZnO NR menurun dari 43,74% menjadi 29,20% dan 30,80% pada sampel ZnO NT 18 jam dan 22 jam. Demikian pula nilai responsivitas menurun dari 5,83 A/W menjadi 3,09 A/W dan 4,06 A/W dan nilai detektivitas menurun dari 1,20×106 Jones menjadi 0,71×106 Jones dan 0,84×106 Jones.

In this study, the synthesis of ZnO nanorods (NR) and ZnO nanotubes (NT) with variations in self-etching time of 18 h and 22 h was carried out and applied as a UV detector device. This nanomaterial has been synthesized using ultrasonic spray pyrolysis (USP) and hydrothermal methods. ZnO NT has been successfully synthesized through the self-etching process of ZnO NR which does not change the crystal phase, lattice parameters or band gap energy. However, the resulting ZnO NT has more crystal defects indicated by a wider optical absorbance curve in the visible light region. This results in a higher photocurrent IL than an dark current ID, leading to a decrease in the performance of the UV photodetector. The sensitivity of ZnO NR decreased from 43.74% to 29.20% and 30.80% in samples of ZnO NT 18 h and 22 h. Likewise, the responsivity value decreased from 5.83 A/W to 3.09 A/W and 4.06 A/W and the detectivity value decreased from 1.20×106 Jones to 0.71×106 Jones and 0.84×106. Jones."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Vivi Fauzia
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
PGB-PDF
UI - Pidato  Universitas Indonesia Library
cover
Margaretha Chandrika Larasati Dion
"

ZnO merupakan salah satu material semikonduktor yang unggul untuk aplikasi fotodetektor Ultraviolet (UV) karena memiliki celah pita yang lebar, sifat transparasi yang baik, tidak beracun, dan biaya produksi rendah dengan proses sintesis yang sederhana. Namun, mobilitas elektron fotodetektor UV masih rendah sehingga photocurrent dan responsivitas yang dihasilkan belum optimal. Oleh karena itu dalam penelitian ini dibuat heterostructure ZnO nanorods dengan MoSe2 nanosheets. MoSe2 nanosheets disintesis dengan metode liquid phase exfoliation dan dideposisi di atas permukaan ZnO nanorods yang ditumbuhkan di atas substrat kaca berelektroda Indium Tin Oxide (ITO) dengan metode spin coating. Penelitian ini menghasilkan MoSe2 nanosheets dan ZnO/MoSe2 dengan celah pita masing-masing sebesar 1,92 dan 3,17 eV. Penambahan MoSe2 nanosheets pada permukaan ZnO nanorods dapat meningkatkan responsivitas, detektivitas, dan sensitivitas fotodetektor UV berbasis ZnO nanorods, yaitu masing-masing sebesar 1,25 A/W, 1,9 Jones, dan 5701%. Peningkatan kinerja ini mungkin akibat pengurangan rekombinasi elektron-hole hasil fotoeksitasi oleh sinar UV dan penurunan arus gelap mungkin karena elektron terperangkap oleh MoSe2. Sedangkan, fotodetektor ZnO nanorods dan ZnO/MoSe2 tidak berfungsi di bawah penyinaran cyan dan red, karena photocurrent yang dihasilkan sangat kecil.

 


ZnO is one of the semiconductor materials that has been received much attention and also considered as a promising candidate for the photodetector due to its wide bandgap, good transparencey, non-toxicity, low-cost and simple preparation. However, photocurrent and responsivity of ZnO-based photodetector based on nanorods is less optimal because of its low electron mobility. Therefore, this study propose the heterostructure of ZnO nanorods and MoSe2 nanosheets. MoSe2 nanosheets were synthesized by the liquid phase exfoliation method and deposited on the surface of ZnO nanorods grown on Indium Tin Oxide electrode coated glass substrate (ITO) via the spin coating method. MoSe2 nanosheets and ZnO/MoSe2 show a bandgap of 1,92 and 3,2 eV, respectively. Responsivity, detectivity, and sensitivity of ZnO/MoSe2 heterostructures is is 1,25 A/W; 1,9 Jones; and 5701%, respectively. The increase in performance may be due to a reduction in the recombination of UV photoexcitated electron-holes and a decrease in dark currents possibly due to electrons being trapped by MoSe2. Whereas, ZnO nanorods and ZnO/MoSe2 photodetectors do not function under cyan and red irradiation, because the generated photocurrent is very small.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aufa Salsabilla
"Penambahan material Transition Metal Dichalcogedines (TMD) pada fotodetektor berbasis ZnO telah menarik banyak perhatian karena dapat meningkatkan kinerja fotodetektor. Material TMD yang digunakan pada pekerjaan ini adalah Tungsten disulfide (WS2). WS2 menunjukan sifat optik dan listrik yang lebih baik saat bentuknya berubah dari bulk menjadi monolayer. Pada pekerjaan ini, kami melaporkan pengaruh penambahan WS2 nanosheet pada fotodetektor berbasis ZnO nanorods. ZnO disiapkan menggunakan metode hidrotermal selama 6 jam dan WS2 disiapkan dengan metode liquid phase exfoliation selama 8 jam. Larutan WS2 yang telah dieksfoliasi kemudian dideposisi di atas permukaan ZnO nanorods menggunakan metode spin coat. Sampel dikarakterisasi menggunakan SEM, TEM, EDS, Raman spektroskopi, UV-Vis spectrometer dan Uji fotodetektor dengan penyinaran cahaya 365, 505, dan 625 nm. Keberhasilan yang didapatkan dari penelitian ini adalah berupa penurunan nilai dark current yang terjadi akibat penambahan lapisan WS2 di atas permukaan ZnO nanorods. Penurunan nilai dark current ini berdampak pada peningkatan ketiga parameter kinerja fotodetektor yaitu Sensitivitas, Responsivitas, dan Detektivitas yang dihitung pada tegangan 5V. Dibawah penyinaran sinar UV (365 nm) dengan daya 3.0 mW, nilai sensitivitas meningkat dari 129.06% menjadi 334.04%, nilai responsivitas meningkat dari 0.93 A/W menjadi 1.11 A/W, dan kemampuan detektivitas naik dari 2.5x109 menjadi 4.4 x 109 Jones.

The addition of Transition Metal Dichalcogedines (TMD) towards the photodetector based on ZnO has attracted much attention due to their ability to improve the performance of photodetector. TMD that used in this work is Tungsten disulfide (WS2). WS2 shows better optical and electrical properties when it changed from bulk to monolayer. In this work, we report the effect of  WS2 nanosheets addition to the performance of photodetector based on ZnO nanorods. ZnO were prepared by hydrothermal method for 6 hours and WS2 were prepared by liquid phase exfoliation for 8 hours. Exfoliated WS2 was deposited on the ZnO nanorods surface by spin-coating method. The sample was characterized by SEM, EDS, TEM, Raman spectroscopy, UV-Vis spectrometer, and photodetector test using 365, 505, and 625 nm incident lights. Our work has successfully lowered the dark current after WS2 addition on ZnO nanorods surface. It has an impact to the enhancement of photodetector performances such as sensitivity, responsivity, and detectivity that measured at voltage bias 5V. Under the illumination of UV light with 3.0 mW power, the sensitivity increased from 129.06% to 334.04%, responsivity increased from 0.93 to 1.11 A/W, and the detectivity increased from 2.5 x 109  to 4.4 x 109 Jones."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adriane Kartianasari
"ABSTRAK
Sintesis nanopartikel MoO3, Ag2O dan nanomaterial MoO3-Ag2O menggunakan prekursor NH4 6Mo7O24.4H2O dan AgNO3 dengan ekstrak daun sirih merah Piper Crocatum yang berperan sebagai sumber basa telah berhasil dilakukan. Ekstrak daun sirih merah mengandung senyawa metabolit sekunder di antaranya flavanoid, alkaloid, polifenol dan saponin. Hasil karakterisasi spektrofotometer UV-Vis menunjukkan bahwa nanomaterial MoO3-Ag2O memiliki panjang gelombang maksimum 213 nm. Hasil karakterisasi dengan UV-DRS menunjukkan bahwa nanopartikel MoO3 memiliki nilai band gap 2.9 eV, nanopartikel Ag2O memiliki nilai band gap 1.2 ev, dan nanomaterial MoO3-Ag2O memiliki nilai energi band gap yang lebih kecil yaitu 2.5 eV. Nanopartikel MoO3, Ag2O dan nanomaterial MoO3-Ag2O diuji aktivitas fotokatalitik degradasinya terhadap metilen biru di bawah sinar tampak menunjukkan adanya penurunan absorbansi pada panjang gelombang maksimum 664 nm dengan persen degradasi berturut-turut adalah 71 , 33 dan 96,6 selama 95 menit. Nanomaterial MoO3-Ag2O memiliki nilai konstanta laju reduksi pada reaksi orde satu sebesar 0.037 menit-1 .Sintesis nanopartikel MoO3, Ag2O dan nanomaterial MoO3-Ag2O menggunakan prekursor NH4 6Mo7O24.4H2O dan AgNO3 dengan ekstrak daun sirih merah Piper Crocatum yang berperan sebagai sumber basa telah berhasil dilakukan. Ekstrak daun sirih merah mengandung senyawa metabolit sekunder di antaranya flavanoid, alkaloid, polifenol dan saponin. Hasil karakterisasi spektrofotometer UV-Vis menunjukkan bahwa nanomaterial MoO3-Ag2O memiliki panjang gelombang maksimum 213 nm. Hasil karakterisasi dengan UV-DRS menunjukkan bahwa nanopartikel MoO3 memiliki nilai band gap 2.9 eV, nanopartikel Ag2O memiliki nilai band gap 1.2 ev, dan nanomaterial MoO3-Ag2O memiliki nilai energi band gap yang lebih kecil yaitu 2.5 eV. Nanopartikel MoO3, Ag2O dan nanomaterial MoO3-Ag2O diuji aktivitas fotokatalitik degradasinya terhadap metilen biru di bawah sinar tampak menunjukkan adanya penurunan absorbansi pada panjang gelombang maksimum 664 nm dengan persen degradasi berturut-turut adalah 71 , 33 dan 96,6 selama 95 menit. Nanomaterial MoO3-Ag2O memiliki nilai konstanta laju reduksi pada reaksi orde satu sebesar 0.037 menit-1 .Kata kunci: Green synthesis, nanomaterial, molibdenum oksida, perak oksida, piper crocatum, fotodegradasi, metilen biru.

ABSTRACT
Synthesis of MoO3, Ag2O nanoparticles and MoO3 Ag2O nanomaterials using precursors NH4 6Mo7O24.4H2O and AgNO3 with red betel leaf extract Piper Crocatum acting as a base source have been successfully performed. Red betel leaf extract contains secondary metabolite compounds including flavonoids, alkaloids, polyphenols and saponins. The UV Vis spectrophotometer characterization results show that the MoO3 Ag2O nanomaterial has a maximum wavelength of 213 nm. The result of characterization with UV DRS shows that MoO3 nanoparticles have a value of 2.9 eV band gap, Ag2O nanoparticles have a 1.2 g evap band value, and MoO3 Ag2O nanomaterials have a smaller energy band gap value of 2.5 eV. The MoO3, Ag2O and nanomaterial MoO3 Ag2O nanomaterials tested photocatalytic activity of degradation against methylene blue under visible light showed a decrease in absorbance at a maximum wavelength of 664 nm with percentage degradation of 71 , 33 and 96.6 for 95 min . The nanomaterial MoO3 Ag2O has a value of the reduction rate constant at a one order reaction of 0.037 min 1. Keywords Green synthesis, nanomaterial, molybdenum oxide, silver oxide, crocatum piper, photodegradation, methylene blue."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Novita Amie Lestari
"Nanorod Seng oksida (ZnO) memiliki sifat optik yang menarik untuk aplikasi devais optoelektronik dan dapat disintesis dengan metode kimia sederhana dan berbiaya rendah, seperti metode hidrotermal. Dalam penelitian ini nanorod ZnO ditumbuhkan di atas substrat kaca transparan berlapis indium tin oxide (ITO) melalui dua tahap, dimana tahap pertama lapisan benih dideposisi pada substrat dengan menggunakan metode ultrasonic spray pyrolisis frekuensi 1,7 MHz dan tahap kedua yaitu penumbuhan struktur nanorod dengan metode hidrotermal. Dalam penelitian ini, benih ZnO nanorod dideposisi dengan tiga variasi waktu deposisi (10, 20, dan 30 menit) dan ditumbuhkan dengan tiga variasi konsentrasi prekursor (0,02 M, 0,06 M, dan 0,1 M) dan tiga variasi waktu tumbuh (2, 4, dan 6 jam). Karakterisasi nanorod ZnO meliputi morfologi permukaan oleh field emission scanning electron microscopy (FESEM), struktur kristal oleh difraksi sinar-x (XRD) dan sifat optik melalui pengamatan fotoluminesen (PL) dan spektroskopi UV VIS. Hasil eksperimen menunjukkan bahwa peningkatan waktu pembenihan dan peningkatan konsentrasi prekursor menghasilkan pita celah energi semakin menurun dan luminisen pada daerah cahaya tampak semakin meningkat akibat peningkatan jumlah cacat kristal. Sementara peningkatan waktu pertumbuhan menghasilkan nanorod yang tumbuhnya mengarah kepada bentuk hexagonal dengan arah yang lebih seragam pada bidang kristal (002) dengan sifat luminisensi yang hampir sama untuk semua jenis sampel.

Zinc oxide (ZnO) nanorods have interesting optical properties for optoelectronic device applications and it can be synthesized by simple and low cost chemical method, such as hydrothermal method. In this study, ZnO nanorods were grown on a transparent indium tin oxide (ITO) coated glass substrate through two steps, where the first step is the deposition of seed layer on the substrate using ultrasonic spray pyrolisis method with a frequency of 1.7 MHz and the second step is the growth of nanorod structure with hydrothermal method. In this study, the seed of ZnO were deposited with three variations of deposition time (10, 20, and 30 minutes) and were grown with three variations of precursor concentration (0.02 M, 0.06 M and 0.1 M) and three variations of growth time ( 2, 4, and 6 hours). The characterization of ZnO nanorod include the surface morphology by field emission scanning electron microscopy (FESEM), the crystal structure by x-ray diffraction (XRD) and the optical properties were studied through photoluminescence (PL) and UV-VIS spectroscopy. The experimental results showed that increasing seeding time and precursor concentration result in the decreasing of band gap energy and the increasing of luminesence in the visible light due to the increasing of crystal defects. While the increasing of growth time leads ZnO nanorods grow toward hexagonal shape with prefered orientation in (002) crystal planes, while the luminesence property is almost similar for all kinds samples.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T44885
UI - Tesis Membership  Universitas Indonesia Library
cover
Albertus Bramantyo Hartanto
"Perovskite solar cell (PSC) adalah tipe sel surya yang memanfaatkan material perovskite sebagai pembangkit electron dan hole ketika sinar datang masuk ke dalam PSC. Selama ini, pengembangan divais PSC umumnya menggunakan material TiO2 sebagai electron transport material (ETM) karena kemampuan TiO2 untuk menghasilkan efisiensi PSC yang tinggi. Akan tetapi, material TiO2 memiliki keterbatasan berupa pemrosesan pada suhu tinggi yang dapat mencapai 500 °C, sehingga membatasi jenis substrat yang dapat digunakan.
Oleh karena itu, pada penelitian ini, digunakan ZnO nanorod (NR) sebagai ETM. Keunggulan material ZnO adalah mobilitas electron yang lebih tinggi dari TiO2 serta energy bandgap ZnO yang hampir serupa dengan TiO2, sehingga short-circuit current density (JSC) yang terbangkitkan bernilai tinggi.
Fabrikasi ZnO NR dilakukan dengan 2-steps method, yaitu pendeposisian seed layer dan diikuti dengan penumbuhan ZnO NR dengan teknik waterbath. ZnO NR ditumbuhkan dengan dua sumber zinc yang berbeda, zinc acetate (ZA) dan zinc nitrate (ZN), dengan waktu penumbuhan (t) yang divariasikan pada waktu 0, 15, 60, 90, dan 120 menit. ZnO NR dengan ketebalan yang berbeda-beda berhasil didapatkan dengan ketebalan terkecil pada 0,1 µm dan ketebalan terpanjang pada 2 µm. Fabrikasi perovskite dilakukan dengan teknik 1-step spin coating yang mencampurkan bahan lead iodide (PbI2) dan methylammonium iodide (MAI) pada satu larutan. Beberapa langkah pengoptimisasian diambil untuk memastikan lapisan perovskite yang terbentuk menutupi seluruh permukaan ZnO NR. Multiwalled carbon nanotube (MWCNT) dikenakan di atas lapisan perovskite dengan metode doctor blading sebagai hole transport material (HTM). Lapisan plastik yang diletakkan di atas perovskite digunakan sebagai insulator dan masking untuk mengisolasi perovskite dari pengaruh uap air. Untuk menganalisa efek ketebalan dan ukuran crystallite dari ZnO, dua sumber ZA dan ZN digunakan untuk fabrikasi divais PSC.
Dari hasil fabrikasi, didapatkan bahwa PSC dengan HTM berupa MWCNT dan pemberian lapisan plastik sebagai insulator memberikan JSC dan efisiensi yang lebih tinggi pada nilai 5,3409 mA/cm2 dan 0,3322 %. MWCNT berfungsi sebagai lapisan pelindung untuk perovskite serta mempercepat transfer hole sebagai akibat dari konduktivitas MWCNT yang tinggi. Nilai JSC tertinggi sebesar 6,18 mA/cm2 didapatkan pada PSC dengan ketebalan ZnO NR sekitar 100 nm dan ukuran crystallite sebesar 19,29 nm. Kurva yang menggambarkan JSC dan efisiensi sebagai fungsi dari ketebalan ZnO NR memberikan bentuk yang hampir linear dan berbanding terbalik. Bentuk dan karakteristik yang linear juga diberikan pada kurva JSC dan efisiensi sebagai fungsi dari ukuran crystallite tetapi jika setiap kurva dibedakan menurut asal sumber ZA atau ZN. Dengan demikian, ketebalan dan crystallite size dari ZnO NR adalah berbanding terbalik terhadap JSC dan efisiensi PSC.

Perovskite solar cell (PSC) is a type of solar cell that utilizes perovskite material as electron and hole generator when incident light come into contact with the PSC. Until recently, the development of the PSC devices usually employs the use of TiO2 material as electron transport material (ETM) because of the TiO2 material's ability to deliver high PSC outputs. However, TiO2 material faces limitation due to its need to be processed at high temperature that could reach to 500 °C which limits the type of the substrate that can be applied.
In this research, the use of alternative ETM through ZnO nanorod (NR) material was analyzed to replace TiO2 material. The advantage of ZnO material is higher electron mobility than TiO2 material while having similar energy bandgap so that the generated short-circuit current density (JSC) would be higher. The fabrication of ZnO NR was done with 2-steps method of seed layer's deposition and followed with the growth of ZnO NR with waterbath technique. ZnO NR were grown with two different zinc sources, zinc acetate (ZA) and zinc nitrate (ZN), with various growth time (t) at 0, 15, 60, 90, and 120 minutes. ZnO NR with different thickness were obtained with the smallest thickness at 0.1 µm and the largest thickness at 2 µm.
The fabrication of perovskite was done with 1-step spin coating technique which mixed lead iodide (PbI2) and methylammonium iodide (MAI) ingredients into one solvent. Several optimization steps were taken to ensure the formed perovskite layer covered the whole surface of the ZnO NR. Multiwalled carbon nanotube (MWCNT) was applied in top of the perovskite layer with doctor blading method as the hole transport material (HTM). A plastic was put above the perovskite as the insulator and masking to isolate the perovskite from the influence of water vapor. In order to analyze the effects of the thickness and crystallite size of the ZnO, two sources of ZA and ZN were utilized to fabricate the PSC devices.
From the results of the fabrication, it was obtained that PSC with MWCNT as the HTM and application of the plastic layer as the insulator would give higher JSC and efficiency at 5.3409 mA/cm2 and 0.3322 %. MWCNT functioned as a protective layer for the perovskite and fastened the hole transfer because of its high conductivity. The highest JSC was obtained at 6.18 mA/cm2 for PSC with ZnO NR's thickness at around 100 nm and crystallite size at 19.29 nm. A curve that depicted JSC and efficiency as functions of ZnO NR's thickness gave an almost linear shape and inversely proportional. Similar shapes and characteristics were given at the curves of JSC and efficiency as functions of crystallite size as long as the curves were classified based from ZA or ZN sources. It can be concluded that the thickness and crystallite size of the ZnO NR were inversely proportional to the JSC and efficiency of the PSC.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2624
UI - Disertasi Membership  Universitas Indonesia Library
cover
Alief Maulana Shiddiq
"Penelitian ini mengkaji kinerja UV detektor berbasis ZnO nanorods. ZnO dipilih sebagai material utama karena sifat-sifatnya yang unggul seperti band gap energi yang lebar, mobilitas elektron yang tinggi, dan sensitivitas terhadap sinar UV. Pengembangan UV detektor berbasis ZnO NRs dilakukan untuk mendapatkan material yang terbaik. Pengaruh radiasi UV/Ozone dilakukan untuk memodifikasi sifat-sifat material. Perlakuan UV/Ozone menghasilkan perubahan yang signifikan pada ZnO NRs, seperti modifikasi morfologi, peningkatan kristalinitas, dan efisiensi emisi PL. UV detektor berbasis ZnO NRs dengan UV/Ozone menunjukkan responsivitas yang signifikan dari 0.13 A/W menjadi 0.64 A/W. Peningkatan responsivitas ini juga menyebabkan peningkatan detektivitas dari 0.99×10^10 Jones menjadi 4.46×10^10 Jones. Selain itu sensitivitas dan efisiensi konversi foton ke listrik juga meningkat, dengan hasil terbaik menunjukkan peningkatan sensitivitas dari 25% menjadi 100% dan EQE 43.26% menjadi 216.28%. Hasil ini memberikan wawasan mendalam tentang potensi penerapan radiasi UV/Ozone dalam meningkatkan kinerja detektor UV berbasis ZnO NRs. Implikasinya adalah pengembangan UV detektor yang lebih responsif, sensitif, dan stabil untuk berbagai aplikasi, termasuk pengukuran radiasi UV, sensor lingkungan, dan teknologi fotovoltaik.

This research examines the performance of UV detectors based on ZnO nanorods. ZnO is chosen as the primary material due to its superior properties such as wide band gap energy, high electron mobility, and sensitivity to UV light. The development of UV detectors based on ZnO NRs is carried out to obtain the best material. The influence of UV/Ozone radiation is applied to modify the material properties. UV/Ozone treatment results in significant changes in ZnO NRs, such as morphological modifications, increased crystallinity, and enhanced PL emission efficiency. UV detectors based on ZnO NRs treated with UV/Ozone showed a notable increase in responsivity from 0.13 A/W to 0.64 A/W. This increased responsivity also led to an improvement in detectivity from 0.99×10^10 Jones to 4.46×10^10 Jones. Additionally, the sensitivity and the efficiency of converting photons to electricity also improved, with the best results showing an increase in sensitivity from 25% to 100% and EQE from 43.26% to 216.28%. These results provide valuable insights into the potential application of UV/Ozone radiation in enhancing the performance of UV detectors based on ZnO NRs. The implications include the development of more responsive, sensitive, and stable UV detectors for various applications, such as UV radiation measurement, environmental sensors, and photovoltaic technology."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rangga Winantyo
"Different morphologies of zinc oxide (ZnO) can be obtained through various synthesizing methods, such as that of the water bath. By synthesizing under various conditions, different ZnO morphologies can be seen as the result of the water bath method. Replacing ZnO nanoparticles with vertically aligned ZnO nanorods results in a much higher energy conversion efficiency. Yet vertically aligned nanorods can only be grown through difficult and expensive methods. Several researchers have studied the growth of one-dimensional (1D) nanorods on homogeneous film with various growth conditions. However, there has been little in the way of research on ZnO nanorods grown on ZnO seed layers using the water bath method. In this research, vertically aligned nanorods with an optimum size ratio were formed through a simple water bath method. This method reveals that the ZnO nanorods are well aligned and grown with a high density and uniformity on the substrate. Their X-ray diffraction patterns reveal that the nanorods are grow in the [001] direction. The density, diameter, and length of the ZnO nanorods can be altered by changing the growing condition. All of the samples were characterized using a scanning electron microscope, X-ray diffraction, and micro Raman spectroscopy. To investigate crystal growth, zinc nitrate and zinc acetate were used when preparing the solution. The results demonstrate that the morphology and alignment of ZnO nanorods are determined by the precursor’s type and deposition time."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:8 (2017)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>