Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 101767 dokumen yang sesuai dengan query
cover
Hera Handayani
"Perkembangan pesat dari industri perbankan yang diiringi oleh semakin meningkatnya kompleksitas dari kegiatan usaha perbankan berpengaruh kepada peningkatan risiko yang melekat pada kegiatan bank. Secara garis besar risiko yang dihadapi perbankan terdiri dari tiga jenis risiko yaitu risiko pasar (market risk), risiko kredit (credit risk) dan risiko operasional (operational risk). Termasuk didalam risiko pasar adalah risiko tingkat suku bunga (interest rate risk) dan risiko nilai tukar (foreign exchange).
Kerugian dalam jumlah besar yang diakibatkan oleh perbbahan nilai tukar telah beberapa kali terjadi. Diantaranya dialami oleh Bank Negara Malaysia yang mengalami kerugian sebesar lebih dari US$ 3 milyar pada tahun 1992 dan US$ 2 milyar pada tahun 1993. Kasus di Indonesia teriadi pada saat krisis ekonomi pada tahun 1998, Bank yang memiliki pinjaman dalam mata uang asing, terutama dalam mata uang US$ mengalami kerugian besar akibat terdepresiasinya nilai rupiah terhadap US$ hingga 70%.
Risiko nilai tukar tersebut dapat diantisipasi melalui penerapan manajemen risiko yang baik dan metode pengukuran risiko nilai tukar yang memadai. Untuk memudahkan bank dalam inengukur 6sikonya Bank Indonesia menetapkan dua kerangka metode pengukuran perrnodalan minimum yaitu standard model dan internal model. Bank yang kompleks dan aktif dalam perdagangan instrumen keuangan dianjurkan untuk menggunakan internal model.
Salah satu internal model yang sering digunakan oleh perbankan akhir-akhir ini untuk mengukur besarnya risiko pasar yang dihadapi adalah metode Value at Risk (VaR). VaR merupakan pengukuran risiko secara kuantitatif yang mengestimasi potensial kerugian maksimal (maximum potential loss) yang mungkin terjadi pada masa yang akan datang yang akan dihadapi pada jangka waktu tertentu (holding period) dan pada tingkat kepercayaan (confidence level) tertentu pada kondisi pasar yang normal.
Perhitungan VaR terdiri atas metode Parametric, diantaranya adalah metode Variance-Covariance, metode Non Parametric, diantaranya Historical Simulation dan Monte Carlo. Dalam perhitungan VaR dengan metode Variance-Covariance dibutuhkan peramalan volatilitas. Volatilitas dari suatu data time series bisa bersifat homoskedastis (mempunyai nilai volatilitas yang konstan) atau bersifat heteroskedastis (mempunyai nilai volatilitas yang berubah-ubah). Metode yang biasa digunakan untuk memodelkan volatilitas yang berubahubah adalah Exponentional Weighted Moving Average (EWMA) dan Generalized Autoregressive Heteroskedaslic (GARCH). Metode GARCI-I mengasumsikan bahwa. variance hari tertentu merupakan fungsi dari variance dan kuadrat error dari hari-hari sebelumnya.
Pada pasar keuangan, market value dari suatu aset dipengaruhi dan mempengaruhi aset lainnya. Besarnya pengaruh tersebut dinyatakan dalam besaran korelasi. Nilai korelasi ini mempengaruhi besarnya VaR portofolio. Sebelumnya korelasi sering dinyatakan dalam besaran yang konstan. Pengukuran korelasi yang bersifat berubah-ubah telah dilakukan namun dengan metode yang cukup rumit. Robert Engle pada papernya yang berjudul Dynamic Conditional Correlation -A Simple Class of Multivariate GARCH Models memaparkan metode pengukuran korelasi dinamis (korelasi yang berubah-ubah dari hari kehari) yang terbukti dapat diandalkan dan cukup sederhana dalam metode penghitungannya.
Bank "X" merupakan bank no 8 terbesar di Indonesia apabila dilihat dari sisi aktiva. Laba bersih yang diraih pada tahun 2004 adalah sebesar Rp. 660 milyar. Bank "X" termasuk ke dalam kategori bank devisa dan memiliki risiko nilai tukar dalam beberapa mata uang asing atau biasa disebut sebagai portofolio. Apabila dilihat dari neraca Bank "X" pada tanggal 31 Desember 2004, Sebanyak 17% aktiva terekspos risiko nilai tukar. Demikian juga pada sisi pasiva, sebanyak 17% terekspos risiko nilai tukar. Bank "X" telah memenuhi persyaratan baik kualitatif maupun kuantitatif yang ditetapkan oleh Bank Indonesia untuk dapat mengukur risiko pasar dengan metode internal. Bank "X" telah menerapkan metode internal untuk mengukur nilai VaR dari portofolio mata uang asingnya. Saat ini, Bank "X" baru menggunakan korelasi konstan dalam mengukur risiko nilai tukarnya. Amat penting bagi Bank "X" untuk melihat apakah penerapan korelasi dinamis mampu memberikan hasil yang lebih akurat dalam memprediksi nilai VaR.
Melihat besarnya jurnlah asset maupun liabilities yang terekspos oleh risiko nilai tukar maka amat penting bagi Bank "X" untuk memastikan bahwa metode pengukuran yang dimilikinya telah optimal dalam mengukur besarnya risiko nilai tukar. Panting bagi Bank "X" untuk mengetahui nilai VaR yang dihadapi apabila dihitung dengan metode yang lain. Hingga Bank "X" dapat mengetahui apakah metode yang diterapkannya pada saat ini telah optimal.
Berdasarkan kedua hal diatas, maka penelitian ini bertujuan untuk menghitung VaR dad risiko nilai tukar alas portofolio mata uang asing yang terdapat pada Bank "X" selama tahun 2004 dengan menggunakan metode pendugaan volatilitas GARCH dan pendugaan korelasi Dynamic Conditional Correlation, untuk kemudian membandingkannya dengan nilai VaR yang dihasilkan oleh metode internal yang dirniliki Bank "X". Hingga dapat disimpulkan metode mana yang lebih baik.
Pengukuran nilai VaR dengan menggunakan metode pendugaan volatilitas GARCH dan pendugaan korelasi dynamic conditional correlation yang diterapkan pada portofolio mata uang asing Bank "X" selama tahun 2004 terlihat lebih efektif dari metode pengukuran VaR yang dirniliki oleh Bank "X". Metode yang digunakan pada penelitian ini hanya menghasilkan 2 failure lebih sedikit apabila dibandingkan dengan 8 failure yang dihasilkan oleh metode yang dirniliki oleh Bank "X".
Penggunakan metode pendugaan korelasi dynamic conditional correlation rnampu menurunkan nilai VaR yang dibutuhkan apabila dibandingkan dengan metode pengukuran VaR dengan pendugaan volatilitas GARCH yang menggunakan relasi biasa tanpa menurunkan tingkat akurasi dari nilai VaR yang dihasilkan. Kedua pengukuran tersebut samasama menghasilkan 2 failure, namun 75% nilai VaR yang dihasilkan dengan pengimplementasian Dynamic Conditional Correlation menghasilkan lebih rendah dibanding penggunaan korelasi statistik. Penghematan yang terbesar terjadi pada tanggal 30 Januari 2004 yaitu sebesar 71.25%.
Pada tahun 2004, berdasarkan uji white heteroskedastisity no cross term, seluruh mata uang bersifat homoskedastis. Metode pengukuran volatilitas GARCH dan Dynamic Conditional Correlation diperkirakan akan lebih marnpu bertahan daripada metode pengukuran yang dimiliki Bank "X" apabila diterapkan pada kondisi volatilitas mata uang yang berubah-ubah/heteroskedastis."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2005
T18481
UI - Tesis Membership  Universitas Indonesia Library
cover
Tambunan, Narsillam
"Perhitungan VaR (Value at Risk) merupakan kewajiban bagi setiap bank dalam mengukur potensi risiko atas portfolio yang dimilikinya. Ini merupakan kewajiban yang diamanatkan oleh Bank Indonesia (BI). Pada Tesis ini, akan diperlihatkan pengukuran VaR risiko nilai tukar pada PT Bank EOS dan pendekatan estimasi volatilitas EWMA serta ARCH/GARCH. Diperlihatkan bahwa ARCH/GARCH dapat menghasilkan model VaR yang lebih baik daripada model VaR yang menggunakan estimasi volatilitas EWMA. Dengan menggunakan ARCH/GARCH, maka kita akan memperoleh nilai VaR Portfolio PT. Bank EOS untuk 1 September 2009 sebesar Rp. 3.783.429.678.

Bank has a responsibility to assess potential risk of its portfolio through VaR (Value at Risk). VaR is a mandatory assessment required by Central Bank of Indonesia (BI). This thesis will illustrate how to make an assessment about potential risk of foreign exchange portfolio of PT Bank EOS by evaluating VaR with both EWMA and ARCH/GARCH methods. Final result described that ARCH/GARCH methods is better than EWMA. By using ARCH/GARCH, VaR for PT Bank EOS on the 1st of September 2009 is Rp. 3.783.429.678."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2010
T-pdf
UI - Tesis Open  Universitas Indonesia Library
cover
Novilia Romadhona
"Perbankan Indonesia terus mengalami perubahan bentuk dan karakter secara signifikan pada beberapa dekade terakhir. Perubahan kebijakan-kebijakan dan regulasi perbankan, tekanan kompetisi dalam pasar perbankan dan keuangan, serta tuntutan kinerja menyebabkan bank harus dikelola secara lebih proaktif terhadap kondisi dan potensi bisnis.
Perbankan sebagai lembaga perantara keuangan saat ini semakin dilihat sebagai salah satu media translasi dan transformasi risiko dari pemilik dana yang pada umumnya bersifat risk averse. Kemampuan perbankan dalam mengelola risiko semakin menjadi perhatian sejalan dengan peningkatan volume dan kompleksitas operasional bisnis, peningkatan frekuensi dan jumlah kerugian perbankan akibat tindakan kriminal yang melibatkan pihak internal (pekerja bank) dan eksternal (nasabah) serta beberapa kejadian seperti bencana alam, kebakaran, dan serangan terorisme telah mengakibatkan kerugian yang sangat signifikan pada suatu sistem perbankan yang dapat mengakibatkan collapsenya suatu bank.
Berdasarkan ketentuan Basel II,maka bank berupaya untuk menerapkan internal model dalam perhitungan rasio modalnya terutama untuk mengetahui seberapa besar potensi kerugian yang akan dilanggung oleh bank di masa yang akan datang. Dengan diterapkannya internal model, otomatis akan berpengaruh terhadap komposisi Modal bank dan kemampuan ekspansinya. Untuk itu diperlukannya suatu data base yang mencatat kejadian yang menimbulkan kcrugian pada bank.
Sesuai hasil pengamatan terhadap manajemen risiko operasional Bank DEF ditemukan bahwa bank tersebut menghadapi risiko operasional namun tidak memiliki metode pengukuran risiko yang akurat sehingga memerlukan adanya pendekatan alternatif yang lebih baik dalam mengukur risiko tersebut. Berdasarkan kondisi tersebut maka dalam rangka memberikan salah satu solusi dalam penghitungan risiko operasional, dilakukan penelitian untuk menentukan model estimasi probabilitas frekuensi dan severity of loss yang tepat dengan metode Aggregating Value at Risk (VaR) dalam manajemen risiko operasional Bank DEF.
Data historis risiko operasional yang digunakan (Loss Event Data Base/LEDB) bersumber dari hasil audit internal. Selanjutnya dengan metode Aggregating VaR akan dibentuk Aggregated Loss Distribution dengan mengaggregasi dua distribusi yaitu fitted frequency dan fitted severity distribusi, kemudian dilakukan perhitungan potensi kerugian maksimal operasional dengan pendekatan Value at Risk (OpVaR) berdasarkan metode quantile dengan tingkat keyakinan 95%.
Total OpVaR merupakan estimasi potensi kerugian maksimal total yang dapat terjadi pada suatu waktu dengan tingkat kepercayaan tertentu, berdasarkan data historis risiko operasional yang pemah terjadi. Penelitian ini memberikan kesimpulan bahwa total nilai Operational Value at Risk (OpVaR) Bank DEF sebesar Rp25.942.954.779.
Berdasarkan uji back testing yang telah dilakukan maka atas hasil estimasi VaR dapat diterima. Hal ini menunjukkan bahwa metode Aggregating VaR dapat diimplementasikan sebagai alai ukur besarnya risiko operasional. Mengingat sedang dikembangkannya internal model dalam penghitungan risiko operasional maka di masa mendatang Bank DEF dapat menggunakan Metode Aggregating VaR dalam perhitungan risiko operasional untuk basil yang lebih baik dan akurat.

In the last decade, Indonesian banking constantly develops and changes in size and characters. Many factors have caused banks to manage proactively focusing in business condition and potential, such as new regulation and policies in banking, the nature of bank and Financial Institution competitiveness, and business efficiency target.
Many risk adverse investors use banks role as one of intermediate financial institutions to deal with their money. Consequently, the need of risk management in banking is required since volume and business operational activities rise in bank. Financial impact in Illegal business activity between internal parts (bank staff) and external parts (customer) and several events such as natural disaster, fire, and terrorist attack have caused significant loses in banking system that could led to bank collapses.
Banking industry regulation-under Basel II Accord requires banks to implement internal model in measuring their capital ratio in sequence to predict how large their potential losses in the future in a certain time horizon and certain level degree of freedom. The result automatically will influence bank capital and expansion target. Further, data base to record all operational losses is needed.
The research found that Bank DEE; was faced potential operational losses when managing its operational risk. Nevertheless, Bank DEF did not have appropriate and accurate method in measuring operational losses, so that it should need an alternative approach. Concerning this situation, this research proposes a solution in measuring operational risk at Bank DEF.
Operational risk historical data (Loss Event Data Base (LEDB) were provided by DEF Bank Internal Audit Division. The aggregated loss distribution is resulted from two distributions (fitted frequency and severity) by applying aggregating VaR method with a confidence level 95%.
Operational Value at Risk (OpVaR) total is the total maximum potential losses estimation over a certain time horizon and with a certain degree of confidence level, based on historical data. The research concludes that the total Operational Value at Risk amount is Rp.25.942.954.779 with 95% degree of confidence.
Based on the back testing Value at Risk estimation was not rejected. The result showed that banks could implement aggregating VaR method to measure its operational risk, and as such Bank DEF is suggested to implement the method for its risk management system.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2006
T 18314
UI - Tesis Membership  Universitas Indonesia Library
cover
Darwanti Juliastuti
"Dengan fungsinya sebagai lembaga intermediasi keuangan, kegiatan usaha Bank selalu dihadapkan pada risiko-risiko yang berkaitan erat. Perkembangan lingkungan eksternal dan internal perbankan di era globalisasi yang tumbuh dengan pesat, terutama dengan adanya perkernbangan teknologi yang luar biasa hebat, menjadi penyebab semakin banyaknya risiko yang harus dihadapi perbankan karena kegiatan operasional bank yang semakin kompleks, sejalan dengan beragamnya produk dan jasa yang ditawarkan perbankan.
Salah satu risiko yang mengemuka saat ini adalah risiko operasional. Risiko operasional menjadi salah satu faktor risiko tambahan yang hares diukur dan diperhitungkan dalam nilai minimum kecukupan modal (Capital Adequacy Ratio), selain risiko kredit dan risiko pasar. Terdapat tiga pendekatan dalam menetapkan beban modal untuk risiko operasional yaitu Basic Indicator Approach, Standardised Approach dan Advanced Measurement Approach.
Penggunaan Basic Indicator Approach yang merupakan model standar dalam mengukur risiko operasional dan cenderung menghasilkan perhitungan capital charge yang lebih besar dibandingkan dengan model internal. Pengukuran risiko operasional Bank AAA dengan menggunakan Basic Indicator Approach menghasilkan capital charge untuk risiko operasional pada akhir tahun 2005 sebesar Rp.3,637,600,000.-. Berkaitan dengan hal tersebut maka dalam karya akhir ini dilakukan pengukuran risiko operasional pada Bank AAA dengan menerapkan dan menguji layak atau tidaknya metode alternatif lainnya yaitu Metode Extreme Value Theory (EVT).
Penelitan ini menggunakan data yang merupakan kerugian aktual (actual loss) bulanan berdasarkan hasil temuan Satuan Kerja Audit Intern dan kertas kerja laporan profil risiko dalam periode I Januari 2003 sampai dengan 31 Desember 2006. Dalam menerapkan Metode EVT untuk mengukur risiko operasional Bank AAA, metode identifikasi nilai ekstrem yang digunakan adalah Metode Peaks over Threshold (POT) dengan jumlah data yang tersedia adalah 254 titik.
Dalam Metode Peaks over Threshold, penentuan threshold hares dilakukan terlebih dahulu untuk menjadi dasar penyaringan data ekstrem. Dalam penelitian ini dipilih Cara sederhana yang telah diuji oleh Chavez-Demoulin, yaitu penentuan threshold dengan Metode Persentase yang dilakukan sedemikian sehingga 10% dari data adalah nilai ekstrem. Kemudian dilakukan estimasi parameter dengan menggunakan Hill Estimation untuk mengestimasi parameter shape dan Metode Probability-Weighted Moments untuk parameter scale. Selanjutnya dilakukan perhitungan potensi kerugian maksimal operasional Bank AAA dengan pendekatan Operational Value at Risk (OpVaR) dengan beberapa tingkat keyakinan, yaitu 95%, 99% dan 99.9%.
Total OpVaR merupakan estimasi potensi kerugian maksimal total yang dapat terjadi pada suatu waktu dengan tingkat kepercayaan tertentu, berdasarkan data historis risiko operasional yang pemah terjadi. Hasil perhitungan OpVaR dalam penelitian ini memberikan kesimpulan bahwa total nilai OpVaR Bank AAA dengan tingkat keyakinan 95% sebesar Rp.73,848,797.-. Hal ini menunjukkan bahwa dengan probabilitas 95%, maka kerugian risiko operasional maksimum yang dihadapi oleh Bank AAA selama satu tahun ke depan adalah sebesar Rp.73,848,797.-. Sedangkan OpVaR Bank AAA dengan tingkat keyakinan 99% sebesar Rp.163,383,930.-, dan dengan tingkat keyakinan 99.9% sebesar Rp.751,768,500.-. Hasil perhitungan OpVaR tersebut menunjukkan bahwa OpVaR akan meningkat sangat tinggi dengan kenaikan tingkat kepercayaan.
Berdasarkan hasil penelitian tersebut menunjukkan bahwa pengukuran risiko operasional Bank AAA dengan menggunakan Metode EVT-POT menghasilkan beban modal yang lebih rendah dibandingkan dengan penggunaan Basic Indicator Approach. Dengan demikian, jika Bank AAA menerapkan metode pengukuran risiko operasional dengan Metode EVT-POT maka alokasi modal yang dibutuhkan untuk menutup risiko operasionalnya menjadi lebih rendah sehingga modal yang tersedia dapat dipergunakan untuk melakukan pemekaran aktivitas bank.
Berdasarkan uji back testing yang telah dilakukan, maka atas hasil estimasi OpVaR adalah dapat diterima. Dapat disimpulkan dari penelitian ini bahwa Metode Extreme Value Theory dengan menggunakan Peaks Over Threshold dapat dijadikan metode alternatif untuk mengukur risiko operasional Bank AAA.

With its function as an intermediation financial institution, business activities of a bank are always facing tightly interconnected risks. The external and internal environmental banking growth in the globalization era which grows rapidly, especially with the existence of an extremely remarkable technology growth, becomes the cause of even more risks it has to face, due to more complex bank operational activities according to various products and services offered.
One of the risks emerging at this moment is the risk of operation. The risk of operation becomes one of the additional risks that should be measured and calculated in the minimum value of capital adequacy ratio, not to mention credit risk and market risk. There are three approaches to ascertain the capital burden for operational risk, i.e. the Basic Indicator Approach, the Standardized Approach and the Advanced Measurement Approach.
The usage of the Basic Indicator Approach, which represents the standard model to measure the operational risk and tends to give bigger capital charge calculation compared to the internal model. The operational risk measurement of Bank AAA by using the Basic Indicator Approach gives a capital charge for the operational risk at the end of year 2005 as much as Rp3,657,600,000.-. In connection with the above-mentioned case, in this final thesis the measurement of the operational risk at Bank AAA is carried out by applying and testing whether it is proper or not to use another alternative method, i.e. the Extreme Value Theory Method (EVT).
This research uses data, which forms the monthly actual loss based on the finding results of the Internal Audit Work Unit and working paper reports of the risk profile during the period of January I, 2003 up to December 31, 2006. In applying the EVT Method to measure the operational risk of Bank AAA, the extreme value identification method used is the Peaks Over Threshold Method (POT) with the available data amount of 254 points.
In the POT Method, the determination of threshold should be done beforehand to become the basic extreme data filtering. This research has chosen a simple method, which has already been examined by Chavez-Demoulin, i.e. the determination of threshold by the Method of Percentage, carried out in such a way so that 10% of the data becomes the extreme value. Then, the parameter estimation is carried out by using the Hill Estimation to estimate the parameter shape and the Probability Weighted Moments Method for parameter scale. Furthermore, a calculation of the maximum operational loss of Bank AAA is carried out by approaching the Operational Value at Risk (OpVaR). With several level of confidence, i.e. 95%, 99% and 99.9%.
The total value of OpVaR constitutes the estimation of the total maximum potential loss which can happen at one time with a certain degree of trust, based on the historical datas of operational risks that ever happened before. The result of the OpVaR calculation in this research gives the conclusion that the total value of OpVaR of Bank AAA with a 95% level of confidence as much as Rp73,848,797.-. This matter indicates that with a 95% probability, the maximum operational loss risk faced by Bank AAA during the year ahead will be as much as Rp73,848,797.-, while the OpVaR of Bank AAA with a 99% level of confidence as much as Rp751,768,500.-. The result of the OpVaR calculation indicates that the OpVaR will increase very high with the increase of the level of confidence.
The Result of this research indicates that the measurement of the operational risk of Bank AAA using the EVT-POT Method yields a lower capital charge compared to use the Basic Indicator Approach. Therefore, if Bank AAA applies an operational risk measurement method with the EVT-POT Method, then the allocation of capital, which is required to cover its operational risk becomes lower, so that the available capital can be used to carry out the development of its bank activities.
Based on the test of back testing, which has been performed, the OpVaR estimation test can be accepted. It can be concluded from this research that the application of Extreme Value Theory using the Peaks Over Threshold Method can be utilized as an alternative method to measure the operational risk of Bank AAA.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2007
T19686
UI - Tesis Membership  Universitas Indonesia Library
cover
Justina Ruly Sulistyarini
"Untuk menjalankan lungsinya sebagai financial intermediary. risiko terbesar yang dihadapi bank adalah risiko kredit. Olch karena itu merupakan suatu hal yang panting bagi bank untuk dapat mengukur seberapa besar risiko kreditnya. Pengukuran risiko kredit ini dilakukan dengan terlebih dahulu menentukan model risiko kredit yang tepat.
Pengukuran risiko kredit usaha mikro pada Bank X dengan pendekatan standar yaitu berdasarkan Surat Edaran BI No.8/3/DPNP tanggal 30 Januari 2006 tidak menghasilkan ukuran risiko yang tepat, karenanya diperlukan alat pengukur risiko yang lain. Tujuan penelitian dalam karya akhir ini adalah untuk mengukur besarnya risiko kredit usaha mikro (KUM) pada Bank X dengan metode Credit Risk.
KUM adalah kredit kelolaan Micro Banking and Sales Group pada Bank X yang diklasifikasikan menjadi beberapa jenis produk. yaitu KUM Mandiri. KUM Mapan, KUM Prima, KUM Kelompok dan KUM Karya. Produk-produk tersebut memiliki limit kredit maksimum Rp100.000.000,00 (seratus juta Rupiah).
Produk KUM dipasarkan oleh Bank X sejak bulan Maret 2005. Sampai dengan 31 Mei 2006 Bank X telah menyalurkan KUM sebanyak Rp 1,016 Milyar dengan 59.130 rekening debitur.
Credit Risk+ adalah metode pengukuran risiko kredit yang tepat untuk bald debet pinjaman yang kecil dengan jumlah rekening yang sangat banyak, karena metode ini tidak memerlukan tambahan data makro dan merupakan default mode.
Dalarn pengukuran risiko KUM dengan metode Credit Risk+, terdapat pembatasan sebagai berikut :
1. Data yang digunakan adalah data portfolio KUM pcriode bulan Juni 2005 sampai dengan Mei 2006. Penggunaan data periode tersebut karma produk KUM barn dipasarkan pada bulan Mat-et 2005 dan krcdil dinyatakan default apabila umur tunggakan kewajiban lcbih dari 90 hari. Oleh karena itu kemungkinan terdapatnya default KUM minimal 90 hari setelah diberikannya fasilitas KUM tersebut, yaitu pada bulan Juni 2005.
2. Kredit dinyatakan default apabila tunggakan kcwajibannya telah melebihi 90 hari atau berdasarkan kolektibilitas BI tergolong kredit Kurang Lancar, Diragukan dan Macet. Pengukuran risiko KUM dengan menggunakan metode Credit Risk menunjukkan hasil sebagai berikut :
1. Dengan menggunakan metode Credit Risk, pada bulan Mei 2006 nilai expected loss sebesar Rp 69,74 milyar dan nilai unexpected loss sebesar Rp 104,03 milyar. Hal ini menunjukkan bahwa nilai VaR untuk bulan Mei 2006 adalah sebesar Rp 104,03 milyar, artinya dengan tingkat keyakinan sebesar 95% maka besarnya risiko kerugian maksimum akibat terjadinya default pada portfolio KUM untuk satu bulan ke depan diperkirakan sebesar Rp 104,03 milyar. Jumlah tersebut adalah 10,24% dari total baki debet KUM.
2. Dengan metode Credit Risk bank hams menyediakan modal untuk mencover risiko KUM pada bulan Mei 2006 sebesar 10,24% x 8%= 0,82% dari baki debet KUM atau sebesar Rp 8,32 milyar.
3. Surat Edaran BI No.813IDPNP tanggal 30 Januari 2006 menyatakan bahwa bobot risiko untuk Kredit Usaha Kecil (KUK) sebesar 85 %., maka bank harus menyediakan modal untuk mencover risiko KUM pada bulan Mci 2006 sebesar 85% x 8% = 6.80% dari baki debet KUM atau sebesar Rp 69,12 milyar.
4. Perbedaan kebutuhan modal yang harus disediakan Bank X berdasarkan metode Credit Risk dan berdasarkan SE BI No.8/3/DPNP untuk bulan Mei 2006 adalah sebesar Rp 69,12 milyar - Rp 8,32 milyar = Rp 60,8 milyar.
5. Berdasarkan basil pengujian model dengan backtesting dan likelihood ratio, maka metode Credit Risk dapat dipertimbangkan sebagai model internal untuk mengukur risiko KUM Bank X maupun kredit usaha kecil lainnya yang memiliki karakteristik yang sama.
Metode CreditRisk+ ini dapat dikembangkan sebagai sistem pengukuran risiko yang terintegrasi dengan cor banking sistem pada Bank X juga dapat dimanfaatkan untuk melakukan monitoring dan pengawasan yang lebih efektif terhadap portfolio KUM, dengan cara memfokuskan perhatian pada kelompok debitur dengan nilai eksposur yang tinggi dengan default rate yang terbesar.

As a financial intermediary, the greatest risk a bank has to face is credit risk. Therefore. it is very crucial for a bank to measure its credit risk. First, determining the model of the credit risk does the measurement of credit risk.
The measurement of the risk of micro banking in Bank X by standard approach does not give an accurate profile of its credit risk; therefore another measurement tool is needed. This paper is aimed to measure the credit risk of micro banking (Kredit Usaha Mikro/KUM) of Bank X by CreditRisk+ method.
KUM is managed by Micro Banking and Sales Group of Bank X, which are classified into several types of products, such as KUM Mandiri, KUM Mapan, KUM Prima, KUM Kclompok and KUM Karya. Those products have maximum limit of Rp. 100.000,000,00 (a hundred million rupiahs).
Bank X has launched the KUM products on March 2005. Till the end of May 2006, Bank X has facilitated KUM at the amount of Rp. 1.016 billion for 59,130 customer accounts.
Credit Risk' is suitable for credit risk measurement of loans with small outstanding balance and has many customer accounts, because this method does not need additional data about macro economics and is one of the default mode method.
To measure the risk of KUM by Credit Risk+ method, there are limitations as follows:
1. The data used are KUM portfolio data in the period of June 2005 until May 2006. The period is chosen because the products have been launched since March 2005 and the credit is stated as default whenever the facilities arc under performed for more than 90 days. Therefore the default facilities may be found after 90 days after the first KUM were facilitated, i.e. in June 2005.
2. The credit is slated as default whenever the facilities are under performed for more than 90 days or based on 131 collection is classified as Kredit Kurang Lacar, Diragukan and Macet.
The risk measurement by Credit Risk has the following results:
1. The amount of expected loss on May 2006 is Rp. 69.74 billion and the amount of unexpected loss is Rp. 104.03 billion. This shows that the VaR on May 2006 is Rp. 104.03 billion, which is meant that with the 95% confidence level, the maximum risk loss because of default of portfolio KUM for one month ahead is Rp. 104.03 billion. The amount is about 10.24% of the KUM's outstanding balance.
2. On May 2006 the bank has to provide capital to cover the risk of KUM in the amount of 10.24% x 8% = 0.82% of tine KUM's outstanding balance, or Rp.8.32 billion.
3. The circulating letter of BI no.8/3/DPNP dated January, 30, 2006 is stated that the risk-weighted for Kredit Usaha Kecil (KUK) is 85%, so the bank has to provide capital to cover the KUM credit risk on May 2006 is in the amount of 85% x 8% = 6,80% of the KUM's outstanding balance, or Rp. 69.12 billion.
4. The difference of capital needed based on Credit Risk + method and SE BI no. 8/3/DPNP on May 2006 is Rp. 69.12 billion - Rp.8.32 billion = Rp. 60.8 billion.
5. Based on the backtesting and likelihood ratio procedure, the Credit Risk+ method can be used as the internal model to measure the credit risk of KUM portfolio of Bank X and other small amount loans which is has the same characteristics.
The CredilRisk+ method can be developed as the integrated risk measurement system with czar banking system of Bank X. and also can he used as a more effective monitoring and supervising tools for KUM portfolio, with lousing on the customer group with high exposure and high default rate."
Depok: Universitas Indonesia, 2006
T18564
UI - Tesis Membership  Universitas Indonesia Library
cover
Wiku Suryomurti
"Tukar menukar antar mata uang asing yang dikategorikan sebagai jual beli dalam islam disebut dengan As Sharf. Dalam kaitan dengan investasi, tidak ada bisnis yang tidak mempunyai risiko karena kita tidak mengetahui apa-apa yang akan terjadi besok. Demikian pula dengan nilai tukar mata uang asing. Nilainya terus berfluktuasi sewaktu¬-waktu sehingga mendorong para peneliti untuk melakukan penelitian tentang pergerakan nilai tukar ini dan mempredeiksikan nilainya di masa mendatang untuk meminimalisir risiko yang mungkin terjadi dan kerugian yang ditanggungnya. Umumnya data statistik didekati dengan asumsi normal dimana asumsi ini cenderung menyesatkan karena mengabaikan kemungkinan terjadinya pergerakan ekstrim dalam distribusi data tersebut. Kegagalan mengidentifikasi potensi risiko ekstrim dapat membawa bencana keuangan bagi lembaga dan institusi keuangan terutama yang berbasis syariah.
Tujuan dari penelitian ini adalah untuk meneliti apakah pergerakan kurs Rupiah terhadap mata uang asing adalah mempunyai distribusi normal atau ekstrim. Begitu juga untuk meneliti berapa besar potensi risiko ekstrim yang mungkin terjadi Metode yang digunakan adalah Extreme Value Theory (EVT) dengan pendekatan distribusi nilai lebih menggunakan konsep Generalized Pareto Distribution. Nilai yang didapatkan kemudian dibandingkan dengan pendekatan dengan asumsi normal untuk kemudian dianalisis dan diambil kesirnpulan.
Hasil penelitian mendapatkan bahwa distribusi return kurs Rupiah terhadap US Dollar pada periode 1998-2003 adalah tidak normal. Diketahui pula bahwa indeks tail yang didapatkan juga cukup signifikan sesuai dengan konsep GPD. Hasil perbandingan metode EVT dan pendekatan normal dan skewness heteroskedasiik menunjukkan bahwa kesimpulan pengujian yang dilakukan sesuai dengan kesimpulan dari beberapa peneliti lain untuk metode yang sama."
Depok: Universitas Indonesia, 2005
T20208
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Fakih Ijtihadi
"Tesis ini membahas pengukuran Value-at-Risk pada sukuk dan obligasi. Pengukuran VaR dilakukan dengan cara mengelompokkan arus kas nilai sekarang (present value) dari kupon dan nilai par suatu obligasi ke dalam vertices standar RiskMetrics. VaR dari hasil pengelompokan vertices tersebut akan dikalikan dengan matriks korelasi antar vertces tersebut. Dengan demikian akan diperoleh VaR yang telah terdiversifikasi sesuai dengan vertices standar RiskMetrics. Hasil pengukuran VaR tersebut akan dibandingkan dengan pengukuran duration dan convexity untuk masing-masing obligasi yang digunakan pada penelitian ini.

The focus of this study is about Value-at-Risk measurement on Sukuk and Bond. VaR measurement is being conducted by grouping the present value of cash flow from the coupon and par value of a bond into vertices standardized by RiskMetrics. VaR from the vertices grouping will be multiplied with correlation matrix between those vertices. Diversified VaR will be obtained according to vertices standardized by RiskMetrics. The result from VaR measurement will be compared with duration and convexity measurement for each bond in this research."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2010
T28224
UI - Tesis Open  Universitas Indonesia Library
cover
Pramudya Susilo
"Eratnya hubungan antara tingkat suku bunga dengan kinerja perbankan menunjukkan pentingnya tingkat suku bunga dengan pengelolaan risiko bank. Dengan dasar pemikiran tersebut maka timbul pemikiran untuk mengukur risiko yang disebabkan oleh pergerakan suku bunga dalam kerangka pengukuran risiko pasar. Dalam saat yang bersamaan, terdapat kecenderungan untuk menerapkan metode VaR untuk mengukur risiko yang dihadapi oleh perbankan. VaR adalah salah satu metoda untuk mengukur risiko pasar (market risk) yaitu untuk mengestimasi tingkat kerugian yang dapat terjadi karena memiliki suatu asset/portfolio asset dalam nilai tertentu yang nilainya dirujuk kepada nilai pasar (market to market value), dengan tingkat kepercayaan statistika tertentu (confidence level) dan untuk jangka waktu penguasaan asset (holding period) yang tertentu dalam kondisi pasar yang dianggap normal. Pergerakan nilai pasar dari aset tersebut menandai return yang dihasilkan oleh aset, apakah return-nya positif atau negatif. Dengan menganggap suku bunga pinjaman adalah return yang dihasilkan oleh asset kredit maka pada dasarnya metoda VaR dapat digunakan untuk mengukur risiko tingkat suku bunga yang dihadapi oleh bank pada saat memiliki aset kredit dalam jumlah tertentu dalam suatu holding period tertentu yang diakibatkan oleh pergerakan suku bunga pinjaman. Khususnya untuk kredit konsumtif dimana umumnya tingkat suku bunga bersifat fixed selama periode tertentu, risiko suku bunga terkait dengan kemungkinan kerugian bank selama periode tersebut dimana biaya dana (cost of fund) bank dapat bergerak naik dan turun dan mengakibatkan negative spread pada saat biaya dana tersebut naik melebihi suku bunga pinjaman.
Penelitian ini bertujuan untuk: (1) Mengetahui karakteristik data suku bunga pinjaman keempat produk kredit konsumtif KPR Renovasi, Kredit Kepemilikan Mobil (KPM), Kredit Kepemilikan Motor (KP-Motor), dan Kredit Multiguna yang diberikan oleh Bank X selama periode observasi; (2) Untuk memberikan informasi besarnya VaR akibat perubahan suku bunga pinjaman untuk masing-masing produk kredit konsumtif tersebut yang dihasilkan oleh proses perhitungan yang sesuai dengan karakteristik data suku bunga keempat produk kredit tersebut; (3) Untuk memberikan informasi besarnya VaR untuk portfolio kredit konsumtif yang terdiri atas keempat produk kredit tersebut; (4) Menguji validitas metoda VaR yang digunakan dalam hal kemampuan metoda tersebut untuk mengestimasi tingkat kerugian yang dialami Bank X karena risiko tingkat suku bunga. Berdasarkan basil pengujian atas data tingkat suku bunga keempat produk kredit konsumtif, diperoleh hasil karakteristk sebagai berikut: (1) Non-stasioner, sehingga data harus dideferensiasi satu kali (diferensiasi tingkat 1) untuk menjadi stasioner dan dapat diuji lebih lanjut; (2) Tidak terdistribusi secara normal, sehingga nilai a yang akan digunakan dalam perhitungan VaR hares dikoreksi lebih dahulu menggunakan Cornish Fisher Expansion menjadi a; (3) Homoskedastik, sehingga volatilitas data yang diperlukan untuk perhitungan VaR dapat dihitung menggunakan rumus deviasi standar statistik.
Angka VaR dihitung dengan menggunakan holding periode 1 bulan dan tingkat kepercayaan 95%, dengan demikian nilai VaR yang dihitung menggunakan data posisi akhir bulan x digunakan untuk mengestimasi tingkat kerugian pada akhir bulan x-H dengan tingkat keyakinan 95%, atau dengan kata lain: hanya 5% kemungkinannya bahwa tingkat kerugian pada akhir bulan x+1 akan melebihi nilai VaR.
Hasil uji dengan cara bakc testing menunjukkan hasil yang baik di mane dari keempat produk kredit yang dianalisis, tidak terdapat overshoot sclama periode observasi. Hasil pengujian validitas VaR lebih lanjut dengan Kupiec Test (metoda TNoF) menunjukkan bahwa penggunaan metoda VaR dalam penelitian ini untuk mengestimasi tingkat kerugian akibat risiko tingkat suku bunga untuk masing-masing produk kredit konsumtif Bank X tersebut dapat dianggap valid.
Untuk penghitungan VaR Portfolio, hasil uji return portfolio menunjukkan karakteristik data sebagai berikut: (1) Non-stasioner, sehingga data harus dideferensiasi satu kali (diferensiasi tingkat 1) untuk menjadi stasioner dan dapat diuji lebih lanjut; (2) Terdistribusi secara normal, sehingga nilai yang akan digunakan dalam perhitungan VaR tidak perlu dikoreksi; (3) Homoskedastik, sehingga estimasi volatilitas dapat menggunakan rumus standar deviasi statistik.
Uji validitas VaR portfolio dengan backtesting menunjukkan tidak terdapat overshoot selama periode observasi, dan uji lebih lanjut dengan Kupiec Test menunjukkan bahwa VaR portfolio valid digunakan untuk mengestimasi kerugian maksimum portfolio kredit konsumtif karena risiko tingkat suku bunga.

The objectives of this study are: (1) to determine the characteristic of loan interest rate data of four consumer loan products at Bank X: KPR Renovasi (Housing Loan - for Renovation Purpose), KPM (Car Loan), KPMotor (Motor Cycle Loan), and KPM (Multi Purpose Loan) which were advanced by Bank X within the observation period of August 2002 to November 2005; (2) To determine the Value at Risk (VaR) which quantifies market risk resulting from fluctuation in loan interest rate for each consumer loan product; the calculation process to produce such VaR should be done according to a method that fits the characteristic of data determined in point 1 above; (3) To determine the VaR of the loan portfolio consisting of the above four consumer loan products; (4) To test the validity of VaR method used, in terms of its ability to estimate the extent of loss suffered by Bank X due to interest rate risk. The results of test on characteristic of interest rate data of the four consumer loan products showed that the data has the following characteristics: (1) Non-stationary, hence the data needs to be differentiated at ' order as to become stationary and eligible for further test steps; (2) Not having normal distribution, hence a for VaR calculation must be adjusted using Cornish Fisher Expansion to become a ("prime Alpha"); (3) Homoscedastic, meaning the simple statistical standard deviation formula can be used to calculate the volatility of data. VaR is calculated using 1 month holding period and 95% confidence level, meaning VaR calculated based on month X's end position is used to estimate the extent of loss at the end of month X+1 on 95% confidence level. In other words: there is only 5% probability that the extent of lost at the end of month x+1 will exceed VaR value.
Back testing showed a good results whereby no overshoot identified within the observation period. Further validity test using Kupiec Test (to be more specific. Kupiec Test with TNoF approach) showed that the VaR method used in this study to estimate the extent of loss due to interest rate risk of each Bank s consumer loan product is considerably valid. The results of test on the characteristic of portfolio return (derived from each loan 's interest rate data and taking into account the loan outstanding of each loan as to 'weight' each loan's data), are as follows: (1) Non-stationary, hence the portfolio return data needs to be differentiated at order as to become stationary and eligible for further test steps; (2) Having normal distribution, hence no need to adjust a for VaR calculation; (3) Homoscedastic, meaning the simple statistical standard deviation formula can be used to calculate the volatility of por folio return.
Backtesting on the portfolio VaR value showed no overshoot within the observation period. Further test using Kupiec (TNoF approach) test verifies that the portfolio VaR is valid for the use of estimating the extent of loss due to interest rate risk."
Depok: Universitas Indonesia, 2006
T18545
UI - Tesis Membership  Universitas Indonesia Library
cover
Hari Sakti
"Tesis ini membahas perhitungan risiko atas kredit usaha kecil pada Bank X. Pemilihan pengukuran risiko kredit dengan menggunakan pendekatan creditrisk diperlukan sesuai dengan karakteristik kredit yang memiliki nasabah dalam jumlah besar dan nilai penyaluran kredit yang relatif kecil. Pengukuran creditrisk dilakukan dengan menghitung frequency of default dan loss given default dan menghitung distribution of default losses. Distribution of default losses digunakan untuk menentukan nilai expecied loss, unexpected loss dan economic capital.
Nilai economic capilal merupakan besarnya cadangan modal yang harus dibentuk Bank X untuk menutup expected loss. Pengujian dengan menggunakan backresting dengan loglikelihood ratio (LR) test, diperoleh bahwa metode creditrisk cukup valid untuk mengukur risiko atas kredit Bank X.

This research analyzes the calculation of credit risk in Bank X especially in small business lending. Creditrisk approach is needed for measuring credit risk regarding its characteristics which has many customers and relatively small amount of credit portfolio. Creditrisk measurement is conducted by computing frequency of default, loss given default and distribution of default losses. Distribution of default losses is used to determine the value of expected loss, unexpected loss and economic capital.
The value of economic capital is the amount of capital reserve that must be provided by a bank to cover expected loss. Based on the test using backtesting with loglikelihood ratio (LR) test, is is concluded that creditrisk method is valid for measuring credit risk in Bank X."
Depok: Universitas Indonesia, 2010
T33289
UI - Tesis Open  Universitas Indonesia Library
cover
Gempur Soesetyo Hadi
"Setelah melalui prahara ekonomi yang cukup dahsyat di tahun 1997 dan 1998 yang ditandai dengan meniburuknya perekonomian dan bergugurannya perbankan Indonesia justru ilmu Risk Management khususnya Market Risk semakin berkembang pesat untuk mengkontrol p01ifolio dari potensi kerugian. Salah satu metode pengukuran potensi resiko yang sangat pesat digunakan adalah Value At Risk sebab sebagai alat manajemen tool ini dipandang mampu melakukan kuantifikasi potensi kerugian portfolio.
Pada masa mendatang, tidak lama lagi Bank Indonesia tentunya akan semakin ketat mengawasi perbankan dengan menerapkan pengawasan atas pengelolaan portfolioperbankan tem1asuk Foreign Exchange yang lebih ketat. Prediksi VAR menjadi begitu populer bagi banker, regulator, perusahaan konsultan dan akademisi setalah Basle Banking Supervision sejalan dengan aturan Basle Committee on Banking Supervision.
Terdapat tiga (3) metode pengukuran VAR yang banyak digunakan saat ini, yaitu metode pendekatan yaitu Historical Simulation, Variance-Covariance dan Monte Carlo Simulation. Pada karya akhir ini, penulis mencoba menerapkan perbandingan perhitungan VAR menggunakan dua metode yang pertama dengan faktor pasar tunggal kurs tengah penutupan spot foreign exchange. Terdapat dua portfolio dibentuk oleh komposisi 17 mata uang asing dan perbedaan portfolio yang satu dengan yang lain hanya diletakkan pada bobot/posisi EUR, JPY dan USD. Untuk mempermudah perbandingan kedua pendekatan itu, kedua portfolio tersebut diasumsikan memiliki IDR equivalent tetap yaitu sebesar Rp. 3 trilyun dan posisinya adalah long.
Pada perhitungan VAR menggunakan pendekatan Historical Simulation, return dihitung secara arithmatik yang berdasarkan perubahan pada faktor pasar kurs tengah penutupan spot foreign exchange dari data observasi historis selama 518 hari. Protit dan loss portfolio yang diperoleh diurutkan mulai dari profit yang terbesar sampai dengan loss yang terbesar. Akhimya nilai VAR diperoleh dari profit/loss sesuai dengan tingkat kepercayaan yang dipilih.
Perhitungan VAR berikutnya adalah menggunakan pendekatan VarianceCovariance, sesuai dengan asumsi distribusi normal maka return dihitung secara geometric atau log nonnal. Selanjutnya dihitung variance, volatilitas/standar deviasi, covariance dan koefisien korelasi serta dibentuk matrik variance-covariance. Nilai VAR diperoleh dari perkalian matrix multiflication dan trasnpose profit/loss dengan tingkat kepercayaan yang telah ditentukan.
Untuk mempermudah analisa perbedaan basil kedua perhitungan tersebut pada masing-masing tingkat kepercayaan, selanjutnya dibentuk grafik histogram untuk masing-masing portfolio."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2003
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>