Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 142534 dokumen yang sesuai dengan query
cover
Firdy Sani Adhyasta
"Proses perhitungan persentase mineral berdasarkan jenisnya atau point counting, merupakan salah satu proses yang tidak mudah. Boleh jadi seorang ahli geologi pun membutuhkan waktu yang relatif tidak singkat untuk melakukannya. Kesulitan ini terkait ukuran, objek penelitian, maupun perbedaan dalam menginterpretasikan objek yang diteliti. Di sisi lain pembelajaran mendalam atau deep learning menggunakan sistem kecerdasan buatan (artificial intelligence) dapat meniru manusia dan bagaimana jaringan saraf bekerja untuk melakukan suatu kegiatan. Skripsi ini membahas mengenai bagaimana sistem kecerdasan buatan digunakan untuk membantu identifikasi dan point counting mineral kuarsa, berdasarkan sampel sayatan tipis mikroskop polarisasi bidang. Sampel yang digunakan berasal dari sebagian daerah Kecamatan Agrabinta, Cidadap dan sekitarnya. Sampel sayatan tipis PPL batuan yang didapatkan dianalisis dengan tiga metode, yakni metode point counting konvensional, pengiriman beberapa sampel ke laboratorium, dan menggunakan sistem kecerdasan buatan aplikasi yang diberi nama Quartz Point Count. Dari ketiga metode kemudian dibandingkan hasil dari persentase mineral kuarsa. Hasil dari penelitian ini menunjukan penggunaan sistem kecerdasan buatan untuk point counting mineral kuarsa pada sampel wilayah penelitian, memiliki nilai perbedaan yang tidak signifikan dibandingkan hasil point counting konvensional, maupun hasil uji laboratorium.

The process of calculating the percentage of minerals based on type or point counting is not an easy process. It may take a geologist a long time to do this. This difficulty is related to size, research object, and differences in interpreting the object. On the other hand, deep learning using an artificial intelligence system can imitate humans and the way neural networks work in carrying out many activities. This thesis explains how artificial intelligence systems are used to assist in the identification and point count of quartz mineral, based on thin section samples from a plane polarizing microscope (PPL). The samples used came from Agrabinta, Cidadap and surrounding areas. The PPL thin section rock samples obtained were analyzed using three methods, the conventional way of point counting, sending several samples to the laboratory, and using an artificial intelligence system application called Quartz Point Count. The three methods then compare the results of the percentage of quartz minerals. The research result shows that the use of an artificial intelligence system for calculating quartz mineral points in research location samples has no significant differences compared to conventional point counting results or laboratory test results."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book constitutes the refereed proceedings of the 25th Canadian Conference on Artificial Intelligence, Canadian AI 2012, held in Toronto, Canada, in May 2012. The 23 regular papers, 16 short papers, and 4 papers from the Graduate Student Symposium presented were carefully reviewed and selected for inclusion in this book. The papers cover a broad range of topics presenting original work in all areas of artificial intelligence, either theoretical or applied.
"
Berlin : Springer-Verlag, 2012
e20406307
eBooks  Universitas Indonesia Library
cover
"This book constitutes the refereed proceedings of the Workshops held at the 8th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2012, in Halkidiki, Greece, in September 2012. The book includes a total of 66 interesting and innovative research papers from the following 8 workshops: the Second Artificial Intelligence Applications in Biomedicine Workshop (AIAB 2012), the First AI in Education Workshop: Innovations and Applications (AIeIA 2012), the Second International Workshop on Computational Intelligence in Software Engineering (CISE 2012), the First Conformal Prediction and Its Applications Workshop (COPA 2012), the First Intelligent Innovative Ways for Video-to-Video Communiccation in Modern Smart Cities Workshop (IIVC 2012), the Third Intelligent Systems for Quality of Life Information Services Workshop (ISQL 2012), the First Mining Humanistic Data Workshop (MHDW 2012), and the First Workshop on Algorithms for Data and Text Mining in Bioinformatics (WADTMB 2012)."
Heidelberg: Springer, 2012
e20410589
eBooks  Universitas Indonesia Library
cover
Sardy S.
1992
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Eugene Clarance
"Diabetes melitus tipe 2 (DMT2) merupakan salah satu tipe diabetes yang telah menjadi permasalahan besar dalam dunia kesehatan. Salah satu pengobatan DMT2 yang mendegrasi enzim glukagon dan meningkatkan sekresi insulin adalah inhibitor Dipeptidil Peptidase-IV (DPP-IV).  Inhibitor DPP-IV yang sudah digunakan memiliki efek samping yang bahaya, seperti pankreatitis akut, arthalagia, dan gagal jantung. Pada penelitian ini, dilakukan pengembangan model Virtual Screening (VS) menggunakan teknologi Artificial Intelligence (AI) untuk identifikasi inhibitor DPP-IV yang berpotensi. Pengembangan model VS dilakukan menggunakan konsep machine learning (ML) dan deep learning (DL). Pada penelitian ini, dilakukan 18 pengembangan model ML dan 8 model DL. Model VS DPP-IV yang optimal merupakan DNN dengan fitur Fingerprint dengan nilai parameter statistik lebih tinggi dari threshold VS optimal yaitu 0,85, dengan akurasi 0,91554, presisi 0,90815, sensitivitas 0,92319, selektivitas 0,90801, dan nilai F1 0,9156. Hyperparameter optimal model VS adalah tiga layer dengan jumlah neuron 2.000, 1.000, 100; nilai dropout 0; ukuran batch size 256; jumlah epoch 100; kecepatan learning rate 0,0001; dan tipe activation function merupakan RELU. Model VS DPP-IV dilakukan ujicoba terhadap database bindingDB dan didapat 24 ligan potensi. Berdasarkan perbandingan nilai binding affinity 24 ligan potensi terhadap ligan inhibitor DPP-IV menggunakan penambatan molekular, didapat satu ligan potensi berinteraksi dengan situs aktif S2 dan tujuh ligan potensi berinteraksi dengan situs aktif S3. Ligan tersebut memiliki nilai binding affinity lebih rendah dari ligan inhibitor DPP-IV yang FDA-approved dan lebih rendah dari -8 kcal/mol. Hasil ini menunjukkan bahwa model VS DPP-IV menggunakan AI dapat menjadi metode virtual screening dalam identifikasi inhibitor DPP-IV yang baru.

Diabetes mellitus type 2 (DMT2) is one of diabetes type that has been causing problems in the health sector. One of the DMT2 medications that can degrade glucagon enzyme and increase insulin secretion is a Dipeptydil Peptidase-IV (DPP-IV) inhibitor. However, DPP-IV inhibitor drugs result in unexpected side effects such as acute pancreatitis, arthralgia, and heart failure. This research developed a virtual screening (VS) model using Artificial Intelligence (AI) to identify potential DPP-IV inhibitors. VS models that were developed were 18 ML models and 8 DL models. DNN with fingerprint features was the VS model best optimal with statistical parameters that exceeds the optimum VS threshold value, which is 0,85, with accuracy 0,91554, precision 0,90815, sensitivity 0,92319, selectivity 0,90801, and F1 score 0,9156. Optimum VS model hyperparameter used a three-layered neuron with the neuron amount of each layer were 2000, 1000, and 100; zero dropout, 256 batch size, 100 epochs, learning rate 0,0001 with RELU as activation function. DPP-IV VS model was used to predict potential ligands using bindingDB and showed 24 ligands with an AI confidence level above 0.98. Based on the binding affinity comparison with DPP-IV inhibitors by molecular docking, it resulted one ligand interacting with active site S2 and seven ligands interacting with active site S3. These ligands had lower binding affinity value compared to FDA-approved DPP-IV inhibitor by docking. The result of this research showed that the DPP-IV VS model using AI could be a new VS model in identifying new DPP-IV inhibitors."
Depok: Fakultas Farmasi Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pradina Rachmadini
"Proyek ini bertujuan untuk menentukan peringkat tahan api dari dinding baja ringan di bawah kondisi api menggunakan aplikasi kecerdasan buatan. Dua bagian bagian saluran yang diberi lipatan (LCS) dan bagian saluran berongga flange (HFC) grade 500 dan kelas 250 disajikan dalam penelitian ini. LCS adalah jenis konvensional yang digunakan dalam bingkai baja ringan, sementara HFC memperkenalkan memiliki kinerja api yang unggul. Baru-baru ini pemodelan elemen hingga dan uji skala penuh telah digunakan untuk menentukan kinerja api dinding LSF. Meskipun demikian, pemodelan elemen hingga ditemukan memiliki prosedur yang rumit, dan uji skala penuh adalah eksperimen yang memakan waktu. Oleh karena itu, opsi alternatif sebagai pembelajaran mesin diperlukan untuk mengatasi situasi ini. Pendekatan jaringan saraf pembelajaran mesin akan diadopsi untuk melatih data. Masukan akan menjadi data aktual dari FEA dan proyek uji penuh skala sebelumnya. Temperatur dan suhu flensa dan flensa dingin seksi dari suatu bagian diperoleh sebagai input. Kapasitas pengurangan rasio bertindak sebagai output yang akan diprediksi dalam pembelajaran yang diawasi. Pelatihan dan uji coba dilakukan melalui jaringan saraf tiruan dengan menggabungkan parameter yang berbeda seperti fungsi kehilangan, menjaga faktor probabilitas, tingkat pembelajaran, jumlah lapisan, dan neuron. Rasio pengurangan kapasitas yang diperoleh dari pelatihan mesin dapat diplot dan dibandingkan keakuratannya dengan hasil FEA sebelumnya.

This project aims to determine fire resistance rating of Light Gauge Steel Frame (LSF) walls under fire condition using artificial intelligence application. Two section of lipped channel section (LCS) and hollow flange channel section (HFC) grade 500 and grade 250 is presented in this research. LCS is a conventional section used in LSF framing, while HFC introduced having superior fire performance. Recently finite element modelling and a full-scale test have been employed to determine fire performance of LSF walls. Nonetheless, finite element modelling was found to have a complicated procedure, and the full-scale test was a time-consuming experiment. Therefore, an alternative option as machine learning is necessary to overcome this situation. A neural network approach of machine learning will be adopted to train the data. The input would be the actual data from FEA and full-scale test previous project. Hot flange and cold flange temperature and dimension of a section are obtained as the input. Capacity reduction ratio act as an output that will be predicted in supervised learning. Training and testing trialare done through the artificial neural network by combining different parameters such as loss function, keep probability factor, learning rate, the number of layers, and neurons. Capacity reduction ratio attained from machine training can be plotted and compared its accuracy with previous FEA results."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This volume constitutes the refereed proceedings of the 12th Pacific Rim Conference on Artificial Intelligence, PRICAI 2012, held in Kuching, Malaysia, in September 2012. The 60 revised full papers presented together with 2 invited papers, 22 short papers, and 11 poster papers in this volume were carefully reviewed and selected from 240 submissions. The topics roughly include AI foundations, applications of AI, cognition and intelligent interactions, computer-aided education, constraint and search, creativity support, decision theory, evolutionary computation, game playing, information retrieval and extraction, knowledge mining and acquisition, knowledge representation and logic, linked open data and semantic web, machine learning and data mining, multimedia and AI, natural language processing, robotics, social intelligence, vision and perception, web and text mining, web and knowledge-based system."
Berlin: Springer-Verlag, 2012
e20410037
eBooks  Universitas Indonesia Library
cover
Utari Kusumawardhani
"Peningkatan popularitas dan penggunaan Artificial Intelligence (AI) dalam penciptaan karya kian ramai diperbincangkan. Mulai dari gambar, suara hingga tulisan, program AI dapat menghasilkan karya sebagaimana buatan manusia. AI bahkan mulai dicantumkan sebagai author atau co-author dalam buku dan jurnal ilmiah, yang menuai pertanyaan mengenai perlindungan hukum, pencipta dan kepemilikan hak cipta atas karya tulis yang dihasilkan AI tersebut. Setelah melakukan penelitian, ditemukan kesimpulan bahwa karya tulis yang dihasilkan AI dapat dilindungi dalam hukum hak cipta beberapa negara seperti Amerika Serikat dan Inggris dengan syarat tertentu, namun belum dilindungi di Indonesia. Aspek originality untuk perlindungan karya tulis yang dihasilkan AI terletak pada prompt dari pengguna dan/atau perubahan-perubahan yang dilakukan pengguna terhadap output dari program AI. Kemudian, pengguna yang memasukkan prompt menjadi pencipta dan pemegang hak cipta atas karya tulis yang dihasilkan AI, yang ditegaskan melalui syarat dan ketentuan program AI. Apabila karya tulis yang dihasilkan AI tidak dapat dilindungi hak cipta, maka substansinya akan sulit dilindungi dan dibuktikan kepemilikan hak ciptanya. Namun, wujud karya tulis dapat menjadi benda bergerak berwujud berupa informasi elektronik yang dilindungi dengan hak kebendaan seperti hak milik.

The increase in popularity and usage of Artificial Intelligence (AI) in creation of works are being widely discussed. From visual, musical, to written works, AI programs are capable of generating works that resemble human creations. AI is even being credited as an author or co-author in books and scientific journals, which raises questions about legal protection, authorship, and copyright ownership of the works generated by AI. After conducting research, it has been concluded that the written works generated by AI can be protected under copyright laws in certain countries, such as the United States and the United Kingdom as long as it fulfils certain conditions, but these works are not yet protected by Indonesia’s copyright law. The originality aspect for the protection of written works generated by AI lies in the prompts that the user entered and/or the changes made by the user to the output from the AI. Subsequently, the copyright of the written works produced by AI belongs to the user as an author, which is regulated by the terms and conditions of the AI program. If the written works generated by AI cannot be protected by copyright law, it will be difficult to protect its substance and to prove its copyright ownership. However, the tangible or physical form of the written works can be considered as tangible movable in form of electronic information and can be protected with property rights, such as ownership rights."
Depok: Fakultas Hukum Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Max Bramer, editor
"They present new and innovative developments and applications, divided into technical stream sections on data mining, data mining and machine learning, planning and optimisation, and knowledge management and prediction, followed by application stream sections on language and classification, recommendation, practical applications and systems, and data mining and machine learning. The volume also includes the text of short papers presented as posters at the conference.
"
London: Springer-Verlag, 2012
e20408175
eBooks  Universitas Indonesia Library
cover
Amanda Kalyana Fasya
"Makalah ini membahas bagaimana persepsi dan adaptasi penggemar SM entertainment terhadap teknologi metaverse perusahaan. Mengingat pengalaman ini, akan bermanfaat untuk memahami strategi yang digunakan perusahaan hiburan dalam menanggapi preferensi konsumen yang berkembang dan teknik mutakhir yang mereka gunakan untuk memfasilitasi keterlibatan penggemar dengan konten pilihan mereka. Dalam hal ini, teknologi Artificial Intelligence (AI) dimasukkan ke dalam komersialisasi idola SM. Inovasi SM Entertainment, seperti konser online dan barang AI, telah membangkitkan minat yang luar biasa dalam komunitas K-Pop. Namun, konsep metaverse ini baru di industri hiburan yang baru masuk perbincangan media arus utama pada 2020). Dengan demikian, cara konsumen memahami dan beradaptasi dengan komersialisasi baru ini berbeda dari pengalaman konsumsi tradisional sebelumnya, yang menawarkan pengalaman yang lebih interaktif, personal, dan dapat diakses oleh konsumen K-pop. Pengetahuan ini memungkinkan kita untuk memahami lebih baik dan menghargai dinamika perubahan industri K-pop dan hubungannya dengan audiensnya. Memanfaatkan Teori Penggunaan dan Gratifikasi, makalah ini berfokus pada motivasi penonton dan kebutuhan untuk mengkonsumsi konser virtual SM Entertainment, dan barang-barang yang tergabung dengan AI menyiratkan konsep metaverse.

This paper discusses how SM entertainment fans’ perception and adaptation to the company’s metaverse technology. Given these experiences, it would be advantageous to understand the strategies that entertainment companies employ in response to developing consumer preferences and the cutting-edge techniques they use to facilitate fan engagement with their preferred content. In this case, Artificial Intelligence (AI) technology was incorporated into SM’s idols' commercialisation. SM Entertainment's innovations, such as online concerts and AI goods, have generated tremendous interest within the K-Pop community. However, the metaverse concept is new to the entertainment industry, which only entered the mainstream media discussion in 2020). Thus, how consumers perceive and adapt to this new commercialisation differs from the previous traditional consuming experience, which offers a more interactive, personalised, and accessible experience for K-pop consumers. This knowledge allows us to understand better and appreciate the changing dynamics of the K-pop industry and its relationship with its audience. Utilising the Uses and Gratification Theory, this paper focuses on audience motivation and needs to consume SM Entertainment’s virtual concert, and the AI-incorporated goods imply the metaverse concept."
Depok: Fakultas Ilmu Sosial dan Ilmu Politik, 2023
MK-pdf
UI - Makalah dan Kertas Kerja  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>