Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 131591 dokumen yang sesuai dengan query
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Madeline Rosmariana
"Peralatan Perangkat Pelepas Tekanan (PRD) dioperasikan dengan tujuan untuk melindungi kehidupan dan keselamatan dalam suatu sistem bertekanan. Peralatan akan mengalami penurunan kondisi seiring berjalannya waktu pemakaian. Ketidakmampuan PRD untuk melakukan fungsinya perlu diidentifikasi sebagai mode kegagalan. Untuk mengurangi risiko apabila terjadi kegagalan, suatu pendekatan seperti Risk Based Inspection (RBI) dapat dilakukan. Metode RBI yang umum digunakan masih menggunakan pendekatan kualitatif, sehingga menghasilkan variasi yang cukup besar. Penelitian ini mengusulkan metode analisa risiko dengan menggunakan pembelajaran mesin berbasis deep learning untuk mengembangkan suatu model penilaian risiko pada PRD akibat mode kegagalan fail on demand (POFOD) yang diharapakan dapat mempersingkat waktu, meningkatkan akurasi, efisiensi dalam pengolahan data hasil inspeksi, serta biaya; dengan menawarkan hasil akurasi perhitungan yang tinggi. Penelitian ini menghasilkan program prediksi risiko dengan menggunakan metode klasifikasi pembelajaran mesin berbasis deep learning akibat mode kegagalan fail on demand pada peralatan perangkat pelepas tekanan. Pembuatan dataset yang digunakan pada model bersumber dari 160 data yang diolah dengan menggunakan standar API 581. Penelitian ini menggunakan beberapa parameter model seperti test size sebesar 20%, random state bernilai 0, penggunaan jumlah epoch sebesar 150, learning rate sebesar 0.001, dan layer berjumlah 3 dengan dense 64,64,8; yang menghasilkan akurasi model sebesar 91%, dari validasi confusion matrix.

Pressure Relief Device (PRD) equipment is operated with the aim of protecting the lives and safety within a pressurized system. An equipment experiences deterioration over time. The inability of PRD equipment to perform its design function needs to be identified as a failure mode. To reduce the risk in case of failure, an approach such as Risk Based Inspection (RBI) can be implemented. The commonly used RBI methods still rely on qualitative approaches, leading to significant variations. This research proposes a method using deep learning to develop a risk assessment model for PRD due to the failure on demand. This is expected to shorten the assessment time, improve accuracy, efficiency, and reduce costs by offering highly accurate calculation results. This research produces a risk prediction program using a deep learning classification method for POFOD in pressure relief device equipment. The dataset used in the model consists of 160 data processed according to API 581 standards. This research utilizes several model parameters, including a test size of 20%, 0 value of random state, 150 epochs, a learning rate of 0.001, and 3 layers with dense of 64, 64, 8. The model achieves an accuracy of 91% from the validation confusion matrix."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fernanda Hartoyo
"Bejana tekan  merupakan peralatan yang sebagai penampung fluida cair maupun gas dengan temperatur yang memiliki perbedaan dengan lingkungan yang ada di sekitarnya yang memiliki kemungkinan kegagalan yang tinggi yang dapat berpengaruh pada banyak faktor. Kegagalan bejana tekan dapat disebabkan karena adanya fenomena korosi seragam yang menyebabkan keluarnya fluida berbahaya dari peralatan yang memiliki tekanan karena adanya penipisan pada dinding bejana tekan. Hal ini dapat dihindari dengan melakukan inspeksi menggunakan risk-based inspection (RBI) yang mampu meningkatkan keamanan bejana tekan berbasis risiko yang dilakukan pada suatu peralatan berdasarkan prioritas risiko yang mempermudah dalam melakukan inspeksi dengan memperhatikan Probability of Failure dan Consequence of Failure. Salah satu metode untuk menganalisis risiko pada bejana tekan adalah dengan menggunakan metode pembelajaran mesin berbasis deep learning yang akan mengembangkan model penilaian risiko kegagalan bejana tekan minyak dan gas akibat korosi seragam yang dapat mempersingkat waktu, meningkatkan akurasi, efisien dalam melakukan pengolahan data, serta lebih lebih hemat biaya dengan menawarkan akurasi perhitungan yang tinggi. Penelitian menghasilkan program prediksi risiko bejana tekan dengan menggunakan klasifikasi pembelajaran mesin berbasis deep learning untuk memprediksi kegagalan pada peralatan bejana tekan akibat korosi seragam dengan menggunakan metode Risk Based Inspection dengan beberapa parameter model seperti random state senilai 25, learning rate sebesar 0.001, dengan layer berjumlah 3 dan dense 64,32,16, test size sebesar 20% dan batch size sebesar 32, dan epoch dengan nilai 150 menghasilkan akurasi model sebesar 93% yang didapatkan dari validasi confusion matrix. Nilai akurasi 93% bersumber dari 300 data yang didapatkan dari pembuatan dataset dengan berlandaskan standard API RBI 581.

A pressure vessel is an equipment that acts as a container for a liquid or gas with a different temperature from the surrounding environment, a high probability of failure, which can affect many factors. Pressure vessel failure can be caused by uniform corrosion, causing the dangerous liquid to be discharged from the pressure vessel due to thinning the pressure vessel wall. Pressure vessel failure can prevent failure by performing Risk Based Inspection (RBI), improving the safety and reliability of pressure vessels based on the risk performed on the equipment are based on risk priority. RBI facilitates the execution of tests that consider the probability of failure and the consequences of failure. One risk analysis method in pressure vessels is to use deep learning based machine learning to develop a failure risk assessment of pressure vessels due to uniform corrosion. This method can shorten the time, increase accuracy, be efficient in data processing, and be more cost-effective by offering high calculation accuracy. In this study, a risk prediction program of a pressure vessel is completed using a deep learning based machine learning classification to predict failure of pressure vessel using the Risk based Inspection method. This program which obtained the following model parameters such as random state of 25, a learning rate of 0.001, with three layers and dense 64,32,16, test size of 20% and batch size of 32, and an epoch with a value of 150, resulted in a model accuracy of 93% obtained from the validation of the confusion matrix. Program with accuracy of 93% comes from 300 dataset based on the RBI 581 API standard.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fernanda Hartoyo
"Bejana tekan merupakan peralatan yang sebagai penampung fluida cair maupun gas dengan temperatur yang memiliki perbedaan dengan lingkungan yang ada di sekitarnya yang memiliki kemungkinan kegagalan yang tinggi yang dapat berpengaruh pada banyak faktor. Kegagalan bejana tekan dapat disebabkan karena adanya fenomena korosi seragam yang menyebabkan keluarnya fluida berbahaya dari peralatan yang memiliki tekanan karena adanya penipisan pada dinding bejana tekan. Hal ini dapat dihindari dengan melakukan inspeksi menggunakan risk-based inspection (RBI) yang mampu meningkatkan keamanan bejana tekan berbasis risiko yang dilakukan pada suatu peralatan berdasarkan prioritas risiko yang mempermudah dalam melakukan inspeksi dengan memperhatikan Probability of Failure dan Consequence of Failure. Salah satu metode untuk menganalisis risiko pada bejana tekan adalah dengan menggunakan metode pembelajaran mesin berbasis deep learning yang akan mengembangkan model penilaian risiko kegagalan bejana tekan minyak dan gas akibat korosi seragam yang dapat mempersingkat waktu, meningkatkan akurasi, efisien dalam melakukan pengolahan data, serta lebih lebih hemat biaya dengan menawarkan akurasi perhitungan yang tinggi. Penelitian menghasilkan program prediksi risiko bejana tekan dengan menggunakan klasifikasi pembelajaran mesin berbasis deep learning untuk memprediksi kegagalan pada peralatan bejana tekan akibat korosi seragam dengan menggunakan metode Risk Based Inspection dengan beberapa parameter model seperti random state senilai 25, learning rate sebesar 0.001, dengan layer berjumlah 3 dan dense 64,32,16, test size sebesar 20% dan batch size sebesar 32, dan epoch dengan nilai 150 menghasilkan akurasi model sebesar 93% yang didapatkan dari validasi confusion matrix. Nilai akurasi 93% bersumber dari 300 data yang didapatkan dari pembuatan dataset dengan berlandaskan standard API RBI 581.

A pressure vessel is an equipment that acts as a container for a liquid or gas with a different temperature from the surrounding environment, a high probability of failure, which can affect many factors. Pressure vessel failure can be caused by uniform corrosion, causing the dangerous liquid to be discharged from the pressure vessel due to thinning the pressure vessel wall. Pressure vessel failure can prevent failure by performing Risk Based Inspection (RBI), improving the safety and reliability of pressure vessels based on the risk performed on the equipment are based on risk priority. RBI facilitates the execution of tests that consider the probability of failure and the consequences of failure. One risk analysis method in pressure vessels is to use deep learning based machine learning to develop a failure risk assessment of pressure vessels due to uniform corrosion. This method can shorten the time, increase accuracy, be efficient in data processing, and be more cost-effective by offering high calculation accuracy. In this study, a risk prediction program of a pressure vessel is completed using a deep learning based machine learning classification to predict failure of pressure vessel using the Risk based Inspection method. This program which obtained the following model parameters such as random state of 25, a learning rate of 0.001, with three layers and dense 64,32,16, test size of 20% and batch size of 32, and an epoch with a value of 150, resulted in a model accuracy of 93% obtained from the validation of the confusion matrix. Program with accuracy of 93% comes from 300 dataset based on the RBI 581 API standard."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muthia Hanifa
"Meningkatnya standar keamanan dan ketatnya persaingan antar perusahaan meningkatkan kebutuhan bagi suatu perusahan untuk mengendalikan kegagalan pada peralatan. Inspeksi secara teratur dilakukan sebagai bagian dari rangkaian pemeliharaan dan manajemen integritas peralatan. Dalam merencanakan dan melakukan inspeksi, diperlukan strategi yang tepat agar inspeksi yang dilakukan tepat sasaran dan sesuai dengan kebutuhan. Risk-based inspection merupakan teknik pengambilan keputusan dalam perencanaan pemeliharaan yang berdasar pada risiko. Pada saat ini, penggunaan metode-metode kecerdasan buatan untuk kegiatan penilaian risiko, pemodelan konsekuensi, dan perencanaan pemeliharaan telah dilakukan. Penelitian ini bertujuan untuk mengembangkan suatu program yang memanfaatkan pembelajaran mesin dan kecerdasan buatan untuk melakukan penilaian salah satu komponen risiko yaitu probabilitas kegagalan (Probability of Failure, PoF) pada bagian cangkang dalam alat penukar panas menggunakan deep learning. Model ini dapat membantu operator yang bekerja di bidang minyak dan gas untuk menentukan tingkatan risiko sehingga inspeksi dapat dilakukan dengan lebih efisien dan terarah. Penelitian ini menghasilkan sebuah program dan disain program pembelajaran mesin berbasis deep learning yang digunakan untuk memprediksi risiko kegagalan akibat korosi seragam pada peralatan sisi dalam cangkang penukar panas cangkang dan buluh (shell-and-tube heat exchanger) berdasarkan standar API 581 dengan akurasi sebesar 89% yang didapatkan dengan parameter-parameter diantaranya learning rate sebesar 0.001, epoch sebesar 150, random state sebesar 60, tiga hidden layer, dan test size sebesar 0.2.

Increasing regulations and safety standards along with competition among companies increase the need for a company to control and predict failure on equipments. Planned inspections are carried out as a part of equipments’ maintenance and integrity management. Appropriate strategies are needed in planning and performing inspections so that the inspections are performed in an efficient manner according to the equipments’ needs. Risk-based inspection is a decision-making technique in maintenance planning which is based on the risk of each equipment. In recent years, incorporation of artificial intelligence methods for risk assessment, consequence modelling, and maintenance planning has been carried out. This research aims to develop a program which utilizes machine learning and artificial intelligence to perform assessment on one of the components of risk, namely the Probability of Failure (PoF), of a shell-and-tube heat exchanger’s inner shell component by using deep learning methods. This model may help operators working in oil and gas field to determine risk levels so that inspections can be done efficiently. This research produced a deep learning-based machine learning program and program design used to predict the risk of failure caused by uniform corrosion on the inner shell component in shell-and-tube heat exchangers based on API RBI 581 standards, yielding accuracy of 89% which is obtained using the following parameters; a learning rate of 0.001, an epoch of 150, random state of 60, three hidden layers, and a test size of 0.2.

Keywords: Inspection, Risk-Based Inspection, deep learning, heat exchanger, uniform corrosion."

Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putu Bagus Raka Kesawa
"Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat.

Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Thomas Hadi Wijaya
"Penelitian ini berfokus pada pengaplikasian teknologi deep learning, secara khusus menggunakan Residual Network (ResNet101) dalam prediksi perencanaan dosis untuk pasien kanker paru-paru. Tiga variasi input data diproses untuk dilatih dan diuji menggunakan ResNet, dan kemudian dievaluasi untuk menentukan variasi input yang paling akurat. Tujuan utama penelitian ini adalah memahami mekanisme kerja deep learning dalam prediksi perencanaan dosis, mengevaluasi akurasi prediksi menggunakan ResNet, dan menganalisis kinerja model pada masing-masing variasi input data. Metodologi yang digunakan melibatkan penggunaan model input dan output untuk menghasilkan kurva distribusi-volume dosis (DVH) prediksi dan aktual. DVH merupakan kurva yang digunakan untuk mengukur seberapa besar dosis yang diterima dalam persentase volume pada organ tertentu. Evaluasi dilakukan menggunakan metode Mean Absolute Error (MAE) dari persentase volume prediksi dan referensi masing-masing pasien pada rentang dosis yang ditentukan yaitu 0-60 Gy dengan lebar bin sebesar 0,25 Gy. Hasil evaluasi menunjukkan bahwa variasi data input A memberikan nilai MAE sebesar 11,24% ± 10,58%, variasi data input B memberikan MAE sebesar 12,79% ± 11,27%, dan variasi data input C memberikan MAE sebesar 12,22% ± 12,13%. Hasil tersebut memperlihatkan bahwa variasi data input A memiliki tingkat akurasi terbaik dengan nilai error dan standar deviasi terendah. Evaluasi juga melibatkan penggunaan train-val loss untuk masing-masing model yang dilatih. Temuan ini menunjukkan bahwa penggunaan citra CT sebagai channel 1, gabungan ROI tanpa ROI target sebagai channel 2, dan ROI target sebagai channel 3 memberikan prediksi perencanaan dosis yang paling akurat untuk pasien kanker paru-paru.

This study focuses on the application of deep learning technology, specifically using Residual Network (ResNet101), to predict dosage planning for lung cancer patients. Three variations of input data were processed for training and testing using ResNet, and then evaluated to determine the most accurate input variation. The primary objectives of this research are to understand the mechanism of deep learning in dosage planning prediction, evaluate prediction accuracy using ResNet, and analyze model performance for each input data variation. The methodology involved using input and output models to generate predicted and actual dose-volume histogram (DVH) curves. DVH is a curve used to measure the dose received as a volume percentage in a specific organ. Evaluation was conducted using the Mean Absolute Error (MAE) method from the volume percentage prediction and reference for each patient within a dose range of 0-60 Gy with a bin width of 0,25 Gy. The evaluation results showed that input data variation A yielded an MAE of 11,24% ± 10,58%, input data variation B yielded an MAE of 12,79% ± 11,27%, and input data variation C yielded an MAE of 12,22% ± 12,13%. These results indicate that input data variation A had the best accuracy with the lowest error and standard deviation. Evaluation also included using train-val loss for each trained model. These findings suggest that using CT images as channel 1, a combination of ROIs excluding the target ROI as channel 2, and the target ROI as channel 3 provides the most accurate dosage planning prediction for lung cancer patients."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Mahdi Ramadhan
"Penggunaan kecerdasan buatan berbasis Deep Learning untuk mendukung prediksi dan pengambilan keputusan sangat populer di banyak bidang. Salah satu bidang tersebut adalah di sektor kesehatan, terutama dalam pengobatan kanker. Banyak ahli onkologi radiasi dan fisikawan medis sedang melakukan penelitian yang menjanjikan dalam histologi dan stadium kanker, prediksi hasil, segmentasi otomatis, perencanaan perawatan, dan jaminan kualitas. Penelitian ini merupakan studi pendahuluan pengembangan dan perbandingan model deep learning yang berfungsi sebagai alat konversi dari nilai piksel citra Electronic Portal Imaging Device (EPID) ke dosis. Data diambil dari dua bidang radioterapi dengan teknik yang berbeda, yang pertama dosimetri transit pada Varian Unique 6MV foton dan dosimetri non-transit pada Varian Halcyon. Selanjutnya karena data yang tersedia hanya sedikit, data tersebut direproduksi dengan teknik augmentasi sehingga data tersebut cukup untuk menjadi data latih pada berbagai model deep learning, hasilnya divalidasi menggunakan indeks gamma 3%/3mm terhadap citra dosis hasil perencanaan dari TPS. Beberapa model deep learning telah berhasil dibuat yang dapat mengubah nilai piksel EPID menjadi distribusi dosis. Pada dosimetri transit telah berhasil dibuat model Convolutional Neural Network (CNN) dengan 6 layer dengan hasil validasi terbaik mencapai 92,40% ± 28,14%. sedangkan pada dosimetri non-transit, model terbaik mencapai tingkat kelulusan gamma indeks rata-rata 90,07 ± 4,96%. Validasi lebih lanjut dalam banyak kasus dan perbaikan perlu dilakukan untuk meningkatkan akurasi kemiripan dengan citra acuan dengan mempertimbangkan karakteristik yang terkandung dalam gambar EPID dan jumlah dataset.

The use of deep learning to support prediction and decision making is very popular in many areas. Many radiations oncologist and medical physicists are conducting promising research in cancer histology and staging, outcome prediction, automated segmentation, treatment planning, and quality assurance. This research is a preliminary study of the development and comparison of deep learning model that work as a conversion tool from the pixel value of Electronic Portal Imaging Device (EPID) images to dose. Data were taken from two radiotherapy plane with different techniques, the first was transit dosimetry on the Varian Unique 6MV Photon and the second non-transit dosimetry on the Varian Halcyon. Furthermore, due to limited of data source, the data was reproduced by augmentation techniques so that the data was sufficient to become training data on various deep learning models, the results were validated using a gamma index of 3%/3mm compared to the planned dose image from TPS. Several deep learning models has been successfully created that can convert the EPID pixel value into a dose distribution. In transit dosimetry, a Convolutional Neural Network (CNN) model with 6 layers has been successfully created with the best results from the validation reaching 92.40% ± 28.14%. while in non-transit dosimetry, the best model achieves an average gamma passing rate of 90.07 ± 4.96%. Further validation in many cases and improvements need to be made to increase the accuracy of similarity by considering the characteristics contained in the EPID image and the number of datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Denanir Fadila Nasiri
"Legal reasoning merupakan metode yang digunakan untuk menerapkan aturan atau Undang-Undang terhadap fakta yang dimiliki dengan tujuan untuk memperoleh argumentasi hukum. Salah satu metode legal reasoning adalah dengan penalaran induktif, yaitu didasarkan pada kasus-kasus terdahulu. Mahkamah Agung di Indonesia melalui situs Direktori Putusan Pengadilan, yang menyediakan dokumen hasil proses pengadilan yang saat ini menampung jumlah dokumen yang sangat besar. Kumpulan dokumen tersebut dapat dimanfaatkan untuk melakukan aktivitas legal reasoning, seperti klasifikasi jenis tindak pidana (criminal offense). Pada penelitian ini, penulis mengusulkan metode deep learning untuk mengklasifikasikan jenis tindak pidana. Hal ini dapat berguna untuk memberikan efisiensi dan referensi kepada praktisi hukum maupun memudahkan masyarakat untuk memahami dasar hukum dari suatu kasus. Secara spesifik, salah satu rancangan model yang diusulkan adalah dengan penerapan model LEAM (Label Embedding Attentive Model) dengan penambahan sejumlah keyword pada label embedding. Model ini secara konsisten memberikan performa yang baik dalam eksperimen, termasuk pada imbalanced dataset dengan perolehan f1-score 68%.

Legal reasoning is a sequence of activities to identify law rules and obtain legal arguments. One of the method in legal reasoning is by using inductive reasoning, which analyzes previous decided cases. Indonesia’s Supreme Court stores the court decision documents online in a large sum. These collections can be utilized to perform legal reasoning, where in this research we focus on the classification of criminal offense. We performed pre-processing tasks including conversion of document to text and cleaning text. We then compared deep learning models, such as LSTM, BiLSTM, CNN+LSTM, and LEAM (Label Embedding Attentive Model). Instead of using only the label name in LEAM, we also carried out experiments by adding related keywords for each label. The LEAM model with additional keywords obtained the best result in an imbalanced dataset with 68% macro average f1-score."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>