Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61259 dokumen yang sesuai dengan query
cover
Amanda Rizki Zhafirah
"Pemilihan distribusi menjadi salah satu dasar dalam memodelkan frekuensi klaim. Pemodelan frekuensi klaim ini nantinya dapat berguna untuk perhitungan risiko dan penentuan besarnya premi murni. Salah satu distribusi yang biasa digunakan untuk memodelkan frekuensi klaim adalah distribusi Poisson. Pada praktiknya, parameter distribusi Poisson, λ, diasumsikan konstan sepanjang waktu. Namun, asumsi bahwa parameter bernilai konstan sepanjang waktu ini tidaklah realistis karena adanya faktor-faktor seperti perubahan dalam perilaku nasabah, perubahan dalam kebijakan asuransi, atau perubahan dalam kondisi ekonomi yang dapat mempengaruhi jumlah klaim yang diajukan. Oleh karena itu, mulai berkembang model distribusi prediktif untuk frekuensi klaim di mana parameter-parameternya bergantung pada waktu. Model-model tersebut dibagi menjadi dua kelas, yaitu model parameter-driven dan model observation-driven. Pada skripsi ini, dipilih model observation-driven yang banyak digunakan dan memiliki keunggulan daripada model lainnya, yaitu Generalized Autoregressive Score Models (GAS). Model GAS memanfaatkan fungsi likelihood dari observasi untuk mendapatkan skor yang digunakan sebagai mekanisme penggerak untuk memperbarui parameter distribusi. Mengingat parameter yang diperbarui pada skripsi ini adalah parameter dari distribusi Poisson, maka model GAS yang digunakan disebut model Poisson GAS. Parameter model Poisson GAS ini kemudian diestimasi berdasarkan suatu data ilustrasi dengan menggunakan metode maksimum likelihood melalui prediction error decomposition. Dengan memperoleh nilai estimasi parameter Poisson GAS, distribusi prediktif frekuensi klaim pada waktu berikutnya pun dapat ditentukan. Selain itu, juga diperoleh hasil bahwa model Poisson GAS mencerminkan sifat adaptif dan dinamis dalam merespons perubahan pola frekuensi klaim yang diamati sehingga cocok untuk memodelkan parameter distribusi prediktif frekuensi klaim.

Distribution selection is one of the foundations for modeling claim frequency. Modeling these claim frequency can later be useful for risk calculation and determining the pure premium. One of distribution that commonly used to model the claim frequency is Poisson distribution. In practice, the Poisson distribution parameter, λ, is assumed to be constant over time. However, the assumption that the parameters of the claim frequency that remain constant throughout this time is unrealistic due to factors such as changes in customer behavior, changes in insurance policy, or changes in economic conditions that could affect the number of claims reported. Therefore, a predictive distribution model for claim frequency where parameters depend on time is developed. These models are divided into two classes, parameter-driven models and observation-driven models. In this study, a widely used observation-driven model is selected and has advantages over other models, namely Generalized Autoregressive Score Models (GAS). The GAS model utilizes the likelihood function of the observation to obtain the score used as a driving mechanism to update the distribution parameters. Given that the parameters updated in this study are parameters of the Poisson distribution, then the GAS model used is called the GAS Poisson model. These Poisson GAS model parameters are then estimated based on an illustration data using the maximum likelihood estimation method via prediction error decomposition. By obtaining the Poisson GAS parameter estimation value, the predictive distribution of the claim frequency at a later time can be determined. Furthermore, results are also obtained that the Poisson GAS model reflects adaptive and dynamic properties in response to changes in the observed claim frequency pattern so that it is suitable to modeling predictive distribution parameters of the claim frequency."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aurellia Surya
"Model kredibilitas mengestimasi frekuensi klaim tahun berikutnya dengan menggunakan data klaim masa lalu. Model kredibilitas Buhlmann dapat dinyatakan sebagai kasus khusus dari Linear Mixed Models (LMM) dengan asumsi banyak klaim dan random effect berdistribusi normal. Namun, banyak klaim lebih tepat dimodelkan dengan distribusi diskrit sehingga LMM perlu diperluas ke Generalized Linear Mixed Models (GLMM) yang dapat mencakup variabel respons mengikuti keluarga eksponensial. Pada tugas akhir ini, dikonstruksi model kredibilitas Buhlmann untuk frekuensi klaim yang diperluas berdasarkan kerangka GLMM dengan variabel respon berdistribusi Poisson dan binomial negatif. Parameter dari model kredibilitas Buhlmann yang diperluas berdasarkan kerangka GLMM diestimasi menggunakan metode numerik adaptive Gaussian quadrature. Data yang digunakan untuk penerapan model adalah data frekuensi klaim yang dibangkitkan dengan menggunakan software R. Pada akhir tulisan, performa model kredibilitas Buhlmann yang diperluas berdasarkan kerangka GLMM dibandingkan terhadap model kredibilitas Buhlmann menggunakan nilai Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) serta Mean Squared Prediction Error (MSPE). Berdasarkan kriteria model terbaik serta nilai MSPE, model kredibilitas Buhlmann yang diperluas berdasarkan kerangka GLMM memiliki performa yang lebih baik dibanding model kredibilitas Buhlmann dalam memprediksi frekuensi klaim.

The credibility model estimates claim frequency in the following year by using past claims data. Buhlmann credibility model can be expressed as a special case of Linear Mixed Model (LMM) assuming claim frequency and random effects are normally distributed. However, claim frequency is more precisely modelled with discrete distributions so that LMM needs to be extended to Generalized Linear Mixed Model (GLMM) which can include response variables following an exponential family. In this final project, extended Buhlmann credibility model is constructed for predicting claim frequency based on the Generalized Linear Mixed Model (GLMM) framework with response variables following Poisson distribution and negative binomial distribution. The parameters of the extended Buhlmann credibility model based on the GLMM framework were estimated using the adaptive Gaussian quadrature numerical method. The data used for application of the model is claim frequency data generated using R software. At the end of this paper, the performance of extended Buhlmann credibility model based on the GLMM framework is compared to Buhlmann credibility model using AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion), and MSPE (Mean Squared Prediction Error) values. Based on the criteria of the best model and the MSPE value, the extended Buhlmann credibility model based on the GLMM framework has better performance than Buhlmann credibility model in predicting claim frequency.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dina Mardiana
"Risiko klaim merupakan salah satu risiko operasional yang harus dikelola oleh perusahaan asuransi. Pada penelitian ini akan dihitung besar perkiraan risiko klaim yang akan terjadi dengan menggunakan pendekatan Loss Distribution Approach-Aggregation Method dan Extreme Value Theory-Generalized Pareto Distribution. Selanjutnya akan dibandingkan metode mana yang lebih cocok dalam pengukuran risiko operasional untuk klaim kecelakaan kerja.
Berdasarkan hasil perhitungan dan back testing didapat bahwa kedua metode valid digunakan untuk menghitung perkiraan risiko klaim operasional pada klaim kecelakaan kerja. Akan tetapi metode Loss Distribution Approach-Aggregation Method lebih cocok untuk mengukur risiko klaim kecelakaan kerja berdasarkan data yang ada.

The risk of claims is one of the operational risks that must be managed by the insurance company. This research will calculate the estimates of the risk of claims that will occur using Loss Distribution Approach Aggregation Method and Extreme Value Theory Generalized Pareto Distribution. Furthermore, these two methods will be compared and chosen which is more suitable for the measurement of operational risk for work accident claims.
Based on the calculations and back testing, both of the methods are valid to calculate the estimates operational risk of claim for work accident claims but the Loss Distribution Approach Aggregation Method is more suitable to measure the risk of work accident claims based on existing data.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Raymond Tanujaya
"ABSTRACT
Pada umumnya, kerugian pada sektor asuransi dihitung dengan asumsi bahwa komponen severitas kerugian dan frekuensi kerugian bersifat saling bebas. Akan tetapi, pada beberapa kasus, severitas kerugian bergantung pada tingkat frekuensi kerugian. Penelitian ini akan menunjukkan perhitungan agregat kerugian dengan memodelkan severitas kerugian dan frekuensi yang dependen. Untuk menandakan adanya pengaruh frekuensi kerugian pada severitas kerugian, penulis memodelkan rata-rata severitas kerugian dengan menggunakan frekuensi kerugian sebagai kovariat. Oleh karena itu, untuk memodelkannya, akan digunakan Generalized Linear Model. Selanjutnya, untuk menghitung taksiran parameter model, akan dilakukan estimasi parameter menggunakan metode maksimum likelihood.

ABSTRACT
Loss in non-life insurance was calculated based on claim severity and frequency along with an assumption of independency. However, in some cases, claim severity is depend upon the claim frequency. This paper presents the derivation of aggregate loss calculation by modelling claim severity and frequency as the assumption of independence is eliminated. To induce the dependence among them, the authors model average claim severity by use claim frequency as the covariate. For that purpose, we use the Generalized Linear Model and maximum likelihood to estimate the parameters. Finally, we will obtain the calculated loss."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alberto Boy Dopo S.
"Generalized Predictive Control merupakan suatu metode perancangan pengendali swatala berbasis model proses, yaitu model proses digunakan secara eksplisit untuk mendisain pengendali dengan meminimumkan suatu fungsi kriteria. Oleh karena itu, untuk mendapatkan performa pengendali yang baik diperlukan juga metode identifikasi model yang baik pula.
Pada percobaan ini dilakukan perancangan dan implementasi pengendali swatala pada Pressure Process Rig (Feedback 38-714) dengan menggunakan metode Recursive Least Square sebagai estimator dan Generalized Predictive Control sebagai aturan sintesa parameter pengendali. Pada percobaan dilakukan pengendalian dengan horizon, N , yang tetap sebesar 3. Pada percobaan pertama dilakukan simulasi pengendalian model linear Pressure Process Rig dengan menggunakan nilai faktor pembobot, hGPC. sebesar 4 dan faktor pelupaan, hRLS, sebesar 0,9999.
Simulasi ini menunjukkan keberhasilan pengendalian model linear Pressure Process Rig karena keluaran sistem yang dihasilkan dapat mengikuti pergerakan setpoint dan juga galat tunak dapat hilang dalam waktu yang singkat. Percobaan berikutnya merupakan pengendalian sistem nyata Pressure Process Rig dengan menggunakan beberapa nilai hGPC dan hRLS yang divariasikan.
Dari hasil percobaan diketahui bahwa nilai hGPC sebesar 2 dan nilai hRLS sebesar 0,9999 merupakan nilai yang tepat digunakan agar performa pengendali dapat maksimal. Dengan nilai ini pengendali dapat melakukan fungsinya secara maksimal, yang ditandai dengan kecilnya nilai settling time. Dari percobaan ini juga diketahui bahwa semakin kecil nilai faktor pembobot, hGPC maka semakin cepat tanggapan sistem, selain itu apabila nilai faktor pelupaan, hRLS, semakin mendekati satu maka pergerakan theta semakin tidak terpengaruh oleh derau."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S40004
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tania Marsa Karina
"ABSTRAK
Count data biasanya merupakan hasil dari suatu count process pada waktu yang kontinu. Salah satu distribusi yang sering digunakan untuk memodelkan count data adalah Poisson count model yang interarival times-nya berdistribusi eksponensial. Namun demikian, Poisson hanya valid untuk data yang memilliki sifat equidispersion. Menerapkan Poisson count model terhadap data yang tidak memenuhi asumsi equidispersion data yang overdispersed maupun underdispersed dapat mengakibatkan kesalahan spesifikasi distribusi dari data. Sebuah count model dikembangkan pada penelitian ini dengan memperluas interarrival times yang digunakan, yaitu Weibull sebagai generalisasi dari eksponensial. Weibull interarrival times dapat mengatasi overdispersion dengan parameter shape 0.

ABSTRACT
Count data are usually the outcomes of an underlying count process in continuous time. One of the distributions often used to fit count data is Poisson count model. However, Poisson count model is only valid if the data satisfy equidispersion assumption. Applying Poisson count model to the significantly non equidispersed data overdispersed or underdispersed could lead to misspesification of the distribution of the data. A count model would be derived in this thesis by expanding the interarrival times used, that is Weibull interarrival times as the generalization of exponential. Weibull interarrival times could handle overdispersed data with shape parameter 0."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Antoni Aldila
"Sistem tata udara presisi atau yang lebih dikenal dengan Precision Air Conditioning (PAC) merupakan mesin refrigerasi yang bekerja berdasarkan konsep termodinamika. Sistem tata udara presisi digunakan di ruang pusat data untuk menjaga temperatur dan kelembaban di dalam kabinet agar peralatan IT di dalam kabinet tidak cepat rusak. Temperatur ideal yang harus dicapai di dalam kabinet berkisar antara 20º - 25ºC, sedangkan kelembaban relatif (RH) yang harus dijaga di dalam kabinet berkisar antara 45-55%. Namun untuk mencapai keadaan tersebut, dibutuhkan pengendalian sistem supaya sistem dapat bekerja dengan keluaran seperti yang diinginkan.
Model predictive control merupakan salah satu metode pengendali prediktif yang populer digunakan di dunia indutri. Sistem tata udara presisi yang dikendalikan dalam penelitian ini merupakan sistem multi input single output (MISO) dengan masukan berupa kecepatan putaran kipas kompresor dan kecepatan aliran udara volumetrik, dan keluaran yang dikendalikan adalah suhu keluaran dari kondenser kedua yang menuju kabinet dari sistem tata udara presisi. Diuji tiga model sistem tata udara presisi, model linier, model nonlinier tanpa beban heat sensible peralatan IT, dan model nonlinier dengan beban sensible peralatan IT yang divariasikan dengan pendekatan model linier biasa hasil identifikasi PO-MOESP dan model linier dengan vektor bias hasil identifikasi menggunakan metode kuadrat terkecil.
Hasil pengendalian MPC untuk ketiga plant sistem tata udara presisi menujukkan performa yang baik dalam pengendalian, dilihat dari keluaran sistem yang mengikuti trajektori acuan yang diberikan.

Precision Air Conditioning (PAC) is a refrigerant machine that works based on thermodynamics concept. PAC is in implemented data center in order to stabilize the temperature and the humidity in cabinet in order to prevent IT damage integrated in the cabinet. The desired ideal temperature for the cabinet is from 20oC to 25oC and the desired relative humidity (RH) is from 45-55%. However, to achieve such a state, it takes control of the system so that the system can work with the output as desired.
Model predictive control is a predictive control method which is popularly used in industries world. Precision air conditioning system are controlled in this study is a multi-input single output (MISO) system with input in the form of fan rotation speed of the compressor and the air volumetric flow rate, and the controlled output is the temperature of the output of the second condenser to the cabinet of the precision air conditioning system. Tested three models of precision air conditioning system, linear models, nonlinear models without the burden of sensible heat IT equipment, and nonlinear models with variation of sensible heat IT equipment load with ordinary linear model approach to the identification of PO-MOESP and linear models with bias the results of identification using the method least squares.
MPC control results for the third plant of PAC systems showed good performance in control, viewed from the system output to follow a given reference trajectory.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T36013
UI - Tesis Membership  Universitas Indonesia Library
cover
cover
Camacho, Eduardo F.
"Model Predictive Control is an important technique used in the process control industries. It has developed considerably in the last few years, because it is the most general way of posing the process control problem in the time domain. The Model Predictive Control formulation integrates optimal control, stochastic control, control of processes with dead time, multivariable control and future references. The finite control horizon makes it possible to handle constraints and non linear processes in general which are frequently found in industry. Focusing on implementation issues for Model Predictive Controllers in industry, it fills the gap between the empirical way practitioners use control algorithms and the sometimes abstractly formulated techniques developed by researchers. The text is firmly based on material from lectures given to senior undergraduate and graduate students and articles written by the authors"
London: Springer, 2007
629.8 CAM m
Buku Teks  Universitas Indonesia Library
cover
Puspita Kurniawati
"Dengan adanya klaim kesehatan yang disampaikan oleh produk Kiranti Sehat Datang Bulan, peneliti ingin mengetahui bagaimana pengaruh health claims terhadap positive behavioral intentions dan apa saja faktor yang mempengaruhi konsumen mempersepsikan health claims tersebut. Selain itu, peneliti juga ingin mengetahui apakah ada perbedaan pengaruh health claims terhadap behavioral intentions pada konsumen yang sering dan jarang mengkonsumsi Kiranti Sehat Datang Bulan. Teknik analisis yang digunakan adalah Structural Equation Modeling ( SEM ).
Hasil penelitian menunjukkan bahwa health claims berpengaruh positif terhadap behavioral intention dan terdapat faktor-faktor lain yang mempengaruhi konsumen dalam mempersepsikan health claims seperti health knowledge yang signifikan berpengaruh terhadap health claims dan source of information and trust yang tidak berpengaruh signifikan terhadap health claims Selain itu, terdapat perbedaan pengaruh health claims terhadap behavioral intentions pada konsumen yang sering dan jarang mengkonsumsi Kiranti Sehat Datang Bulan.

The health claims made by Kiranti Sehat Datang Bulan product leads this study to analyze the impact of health claims to positive behavioral intentions and the factors influencing consumers? perception of the health claims. In addition, the study also aimed to compare the behavioral intentions between consumers who are frequently and rarely consume Kiranti Sehat Datang Bulan. The analysis technique used is the Structural Equation Modeling (SEM).
The results indicated that the health claims has a positive impact to the behavioral intention. Other factors also influencing consumers? perception of health claims, such as the health knowledge that has an impact to the health claims and the source of information that has no impact to the health claims. The result also identify differences between the impacts of health claims to the behavioral intentions of consumers who are frequently and rarely consume Kiranti Sehat Datang Bulan.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2013
S45372
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>