Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Shinta Virdhian
Abstrak :
ABSTRAK
Austempered Ductile Iron (ADI) adalah besi tuang nodular yang mengalami proses austemper yang memiliki kombinasi sifat ketangguhan, keausan dan keuletan yang baik. ADI memiliki struklur accicular ferit dalam matriks austenit. Kandungan austenit sisa sangat menentukan sifat mekanis ADI. Austenit sisa yang terdapat pada ADI tidak stabil dan dapat bertransformasi menjadi mariensit bila mengalami deformasi. Fraksi volume dan distribusi austenit sisa sangat tergantung pada perlakuan panas dan unsur paduannya. Penelitian ini bertujuan unluk mengetahui pengaruh waktu tahan austemper terhadap karakreristik pembentukan austenit sisa pada ADI, kestabilan austenit sisa akibat proses deformasi plastis dan membandingkan perhifungan fraksi volume austenit sisa dengan metode Difraksi Sinar-X dan Point Counting. Bahan penelitian ini adalah BTN FCD -15 dengan unsur paduan 0.27% Mo, 0.23% Mn dan 2.95% Ni. Proses austenisasi dilakukan pada temperazur 900°C dengan waktu tahan 90 menit, lalu proses austemper pada remperarur 400°C dengan waktu tahan 60,120,180 menit. Setelah itu dilakukan proses canai dingin dengan variasi reduksi 5,10, 15 % . Pengujian yang dilakukan adalah kekerasan, pengujiam heat tinting dan pengamatan strukrur mikro serta pengujian Difraksi Sinar-X. Dari penelitian diperoleh bahwa faksi volume austenit sisa berkurang dari 29.25% ke 17.2% dengan meningkatnya waktu tahan austemper dari 60 hingga 180 menit, dengan metode Point Counting. Fraksi volume austenit sisa menurun dari 14.1% menjadi 9.95% (60 menit, 10.95% menjadi 7.25% ( 120 menit, 11.65% menjadi 11.1 % (180 menit dengan meningkatnya reduksi dari 5 hingga 15% dengan metode Point Counting. Kekerasan Bahan ADI meningkat dari 242.25 BHN menjadi 247.15 BHN dengan meningkatnya waktu tahan austemper dari 60 hingga 180 menit. Kekerasam Bahan ADI meningkat dari 256.33 BHN menjadi 307.41 BHN (60 mni, 270.64 BHN menjadi 308.7 BHN (120 mni), 272. 9BHN menjadi 313. 8.5 (180 mni dengan meningkatnya % reduksi dari 5 hingga 15%. Penghitungan fraksi volume austenit sisa dengan metode Difaksi Sinar-X dan merode Point Counting mengalami perbedaan sehingga dinerlukam penelitiam lebih lanjut untuk mencari hubungan antara keduanya.
2000
S41599
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rosmy Nurliyany
Abstrak :
ABSTRAK
ADI (Austempered Ductile Iron) merupakan material besi tuang nodular (BTN) yang telah mengalami perlakuan panas austemper dan memiliki keunggukm dalam hal ketangguhan, kekuatan, ketahanan aus yang sangat baik, harga bahan baku serta biaya permesinannya yang jauh relatif lebih murah. Sifat mekanis pada material ADI sangat ditentukan oleh persentase austenit sim. Austenit sisa yang dihasilkan tergantung pada parameter perlakuan panas yang diberikan dan dapat bertransformasi merjadi martensit bila diberi tegangan. Penelitian ini menyelidiki pengaruh waktu tahan austemper selama 1,2 dan 3 jam serta proses regangan dengan persentase elongasi 0,2%; 0, 6% dan 2% rerhadap karakteristik austenit sisa pada ADI dengan komposisi paduan Mo 0,249% dan Mn 0, 25%. Pengujian yang dilakukan adalah pengujian ARD dan metalografi kuanritatif (point counting) pada material dengan prinsip perhitungan volume austenit sisa sebelum dan setelah proses regangan. Hasil yang diperoleh menunjukkan bahwa fraksi volume austenit sisa yang dihitung dengan XRD dan metalografi kuantitatf (point counting) dengan waktu selama 1,2, dan 3 jam menunjukkan penurunan sebelum dan setelah proses regangan. Perhitungan fraksi volume austenit sisa sebelum proses regangan melalui XRD dengan waktu tahan austemper 1,2 dan 3 jam adalah 44,27%; 8,64% dan <8%. Sedangkan perhitungan melalui point counting adalah 26,2%,' 23,58%,' dan 19, 7%. Perhitungan kekerasan makro pada material ADI ini juga menunjukan penurunan pada waktu tahan austemper 1,2 clan 3 jam yaitu : 243,49,' 260,14 ,' 282, 94 kg/mmz. Sedangkan kekualan tariff nya bervariasi pada waktu tahan 1,2 dan 3 jam yailu .' 97,8,' 103,97,' 84,52 kg/mmz.
2000
S41492
UI - Skripsi Membership  Universitas Indonesia Library
cover
Natasha Putri Nasaruddin Siradz
Abstrak :
Baja paduan rendah (high strength low alloy steel) atau baja HSLA memiliki aplikasi luas termasuk dalam industri alat berat untuk komponen bucket tooth pada excavator. Bucket tooth dikirim ke konsumen dalam keadaan tanpa cacat namun saat diterima, produk mengalami retak yang diindikasikan sebagai delay crack. Delay crack diduga terjadi akibat terjadinya transformasi isotermal pada austenit sisa yang bersifat metastabil sehingga menghasilkan tegangan sisa dan terjadi inisiasi retak selama masa pengiriman. Penelitian ini berfokus pada proses perlakuan panas yang dilakukan, khususnya pada tahap austenisasi. Austenisasi dilakukan selama 28 menit dengan variabel temperatur 850oC, 870oC, 900oC, dan 926oC. Karakterisasi yang dilakukan yaitu metalografi, pengujian kekerasan mikro dan makro, serta pengujian kuantitatif fasa austenit sisa menggunakan program image analyzer. Mikrostruktur yang dihasilkan berupa tempered martensite. Nilai kekerasan baja naik dengan meningkatnya temperatur austenisasi sampai temperatur 900oC kemudian turun pada 926oC. Jumlah austenit sisa menurun dengan naiknya temperatur austenisasi sampai temperatur 900oC kemudian naik pada temperatur 926oC. Temperatur austenisasi paling optimal dengan nilai kekerasan tertinggi dan persentase jumlah austenit sisa terendah pada 900oC. Jika jumlah austenit sisa rendah, maka kemungkinan terjadi transformasi isotermal pada temperatur ruang dari austenite sisa menjadi fasa lain juga menjadi lebih sedikit sehingga mengurangi kemungkinan terjadinya delay crack. ......High strength low alloy steel has a wide application range, including the heavy equipment industry as material for bucket tooth of excavator. Bucket tooth was shipped to a consumer without any defects but when received, the product has a crack which was indicated as delayed crack. Delayed crack was suspected to happen because the retained austenite experienced isothermal transformation resulting in residual stress and crack initiation during the shipping period. This research focuses on the austenitizing stage of heat treatment process. Austenitizing was carried out for 28 minutes on 850oC, 870oC, 900oC and 926oC. The characterization conducted was metallogaphy, micro and macro hardness testing and retained austenite phase quantification using an image analyzer. The microstructure produced was tempered martensite. The hardness of steel increased with the rise of austenitizing temperature until 900oC, then it decreased at 926oC. The retained austenite amount of steel decreased with the rise of austenitizing temperature until 900oC, then it increased at 926oC. The optimum austenitizing temperature is at 900oC. With low amount of retained austenite, the possibility of isothermal transformation in room temperature of the retained austenite to other phases becomes less so it reduces the likelihood of delayed crack.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Afrizal Trimulya Nugraha
Abstrak :
Tool steel atau baja perkakas merupakan jenis baja yang sering digunakan pada industri terutama digunakan sebagai alat untuk pengerjaan logam lain dan cetakan dies atau mold karena baja jenis ini memiliki kekuatan yang lebih tinggi dibandingkan dengan baja jenis lainnya. Salah satu baja perkakas yang sering digunakan adalah AISI P20 yang biasa digunakan sebagai plastic mold steel. Akan tetapi, permasalahan yang sering dihadapi baja perkakas setelah diberi perlakuan panas adalah terjadinya perubahan dimensi pada saat digunakan atau crack pada saat penggunaan. Hal ini diduga disebabkan oleh adanya transformasi austenit sisa selama penggunaan. Maka dari itu, jumlah austenit sisa saat proses quenching diusahakan serendah mungkin. Pada penelitian ini, Proses perlakuan panas austenisasi diberikan di suhu 830oC lalu dilakukan oil quenching serta sub-zero treatment digunakan untuk mentransformasikan fasa menjadi fasa martensit sehingga dapat menekan jumlah fasa austenit dan meningkatkan umur pakai dari P20. Kemudian, dilakukan tempering untuk memperbaiki sifat mekanis dan mengontrol austenite sisa yang ada di dalamnya di mana suhu yang digunakan memiliki 5 variasi antara rentang 440 hingga 600oC agar bisa dikomparasikan. Hasil penenlitian ini menunjukkan perubahan jumlah austenit sisa dan nilai kekerasan pada baja AISI P20 di tiap temperatur tempering serta dibandingkan dengan adanya perlakuan sub-zero. ......Tool steels are steel type which is often used on manufacturing industry mainly for machining or processing other metals and utilised as dies and mould. It is their mechanical properties whose strength are higher than most of other types of steel. One of tool steel which often utilised is AISI P20, it is normally utilised as plastic mould steel. However, there is a problem which this tool steel usually faces when it deploys under operational condition. The steel tends to change in dimension or undergo crack when it is on operation. This trouble is considered to be resulted from transformation of austenite when it utilises. Hence, the latter’s quantity or amount after quenching shall be diminished into minimum number. On this research, austenization heat treatment is performed at 830oC subsequently followed by oil quenching and sub-zero treatment applied for transforming austenite into martensite to decrease austenite quantity and prolong P20 steel usage. Afterwards, specimens are applied to tempering treatment to improve its mechanical properties and control the retained austenite inside, to which 5 varying tempering temperatures ranged from 440oC to 600oC for comparison are arranged. The result of this research defines change in number of retained austenite and hardness value for each tempering temperature and compared to the sub-zero treated ones.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Nurjaman
Abstrak :
ABSTRAK
Grinding ball merupakan salah satu komponen dalam mesin ball mill yang berfungsi untuk menggerus batuan mineral menjadi partikel yang sangat halus (100-300 mesh). Penelitian ini bertujuan untuk mempelajari pengaruh penambahan unsur paduan berupa khromium, molibdenum, vanadium, dan boron terhadap sifat-sifat mekanik grinding ball terbuat dari material high chromium white cast iron, serta pengaruh volume karbida primer, karbida sekunder, dan austenit sisa terhadap ketahanan aus produk grinding ball.
Pembuatan grinding ball berukuran Ø50 mm dilakukan dengan menggunakan teknik pengecoran logam dengan menggunakan tungku induksi. Berikut ini adalah komposisi kimia dari masing-masing grinding ball dalam penelitian ini: 2,18C - 13Cr - 1.38Mo; 1.94C - 13.1Cr - 1.29Mo - 1.307V; 1.89C - 13.1Cr - 1.32Mo - 1.361V - 0.00051B; 2.12C - 16.5Cr - 1.55Mo. Proses perlakuan panas dilakukan terhadap material tersebut berupa: (1) subcritical heat treatment (700oC, 1 jam) dengan pendinginan udara atmosfer, (2) hardening (950oC, 5 jam) dengan pendinginan udara paksa, (3) tempering (250oC, 1 jam) dengan pendinginan udara atmosfer. Karakterisasi untuk mengetahui sifat-sifat mekanik dan struktur mikro dari material tersebut dilakukan melalui beberapa pengujian diantaranya adalah analisa komposisi kimia (Optical Electron Spectroscopy/OES), uji kekerasan (Brinell/ASTM E-10), uji impak (Charpy/ASTM E-23), analisa struktur mikro (mikroskop optik, SEM, XRD), dan uji ketahanan aus/wear rates (laboratory ball mill unit).
Dari hasil penelitian diperoleh bahwa penambahan khromium, molibdenum, vanadium, dan boron memberikan peningkatan yang signifikan terhadap nilai kekerasan dan ketahananan aus pada material high chromium white cast iron. Nilai ketahanan aus grinding ball yang tinggi dimiliki oleh material dengan komposisi 1.89C - 13.1Cr - 1.32Mo - 1.361V - 0.00051B (as-cast) dan 2.12C - 16.5Cr - 1.55Mo (as-tempered), dimana nilai ketahanan aus material tersebut lebih baik dibandingkan dengan grinding ball impor asal China dan India. Ketahanan aus yang tinggi pada material tersebut diakibatkan oleh nilai kekerasan dan ketangguhan yang berimbang, besarnya kandungan volume karbida primer dan sekunder dalam matriks martensit, rendahnya kandungan austenit sisa, serta morfologi karbida primer dan sekunder yang halus.
Abstract
Grinding ball is one of the components in the ball mill unit to grind the minerals rock into very fine particles (100-300 mesh). The purpose of this research are to investigate the effect of alloying elements, such as chromium, molybdenum, vanadium, and boron on the mechanical properties of grinding ball which is made from high chromium white cast iron, and to investigate the effect of primary and secondary carbide volume fraction and also retained austenite volume on the wear resistance of grinding ball.
The manufacturing of Ø50 mm grinding ball was conducted by using the iron casting process. The following are the chemical composition of the grinding ball?s materials in this research: 2.18 C-13 Cr- 1.38 Mo; 1.94 C-13.1 Cr-1.29Mo-1.307 V; 1.89 C-13.1Cr-1.32 Mo-1.361 V-0.00051B; 2.12 C-16.5 Cr-1.55 Mo. The heat treatment process were conducted into those materials include: (1) Subcritical heat treatment (700 ° C, 1 h) with atmospheric air cooling , (2) Hardening (950oC, 5 hours) with forced air cooling, and (3) Tempering (250oC, 1 hour) with atmospheric air cooling. Materials characterization was conducted to find out the mechanical properties and micro structure of those materials by using a few testing methods, there were: chemical analysis (Optical Electron Spectroscopy/OES), hardness testing (Brinell/ASTM E-10), impact testing (Charpy/ASTM E-23), micro structure analysis (optical microscope, SEM, XRD), and wear resistance/wear rates testing (laboratory ball mill unit).
From the results, the addition of alloying elements, such as chromium, vanadium, molybdenum and boron provided a significant improvement on the hardness and wear resistance of high chromium white cast iron. The high wear resistance was owned by the material with 1.89 C-13.1Cr-1.32 Mo-1.361 V-0.00051B (as-cast) and 2.12 C-16.5 Cr-1.55 Mo (as-tempered), which were better than grinding ball?s material from China and India. It was caused by a good combination between hardness and toughness, higher primary and secondary carbide volume fraction in martensitic matrix, lower retained austenite volume, and finer structure of primary and secondary carbide.
2012
T31512
UI - Tesis Open  Universitas Indonesia Library
cover
cover
Naufal Haq Dja`far
Abstrak :
Penggunaan baja High Strength Low Alloy telah menjadi hal yang umum di kalangan industri khususnya produsen alat berat. Baja HSLA ini digunakan sebagai material bucket tooth yang merupakan salah satu komponen pada excavator. Proses pembuatan bucket tooth melalui beberapa tahapan proses perlakuan panas mulai dari hasil pengecoran, yaitu normalisasi, pre-tempering, austenisasi, quenching, dan double tempering. Proses perlakuan panas tersebut masih menunjukkan adanya austenit sisa yang cukup untuk menyebabkan terjadinya fenomena delay crack akibat austenit sisa yang bertransformasi dan menimbulkan tegangan pada bucket tooth. Penelitian ini akan berfokus pada penurunan angka austenit sisa dengan salah satu metode pendinginan yaitu subzero treatment dan melihat pengaruhnya terhadap struktur mikro serta sifat mekanis pada baja HSLA. Perlakuan subzero dilakukan setelah proses quenching. Perlakuan subzero dilakukan dengan mendinginkan baja hingga temperatur -176oC, setelahnya akan dilanjutkan proses perlakuan panas yaitu double tempering. Penelitian ini akan membandingkan hasil perlakuan as-quenched dengan as-subzero dan as-QTT dengan as-QSTT sehingga akan didapatkan perbedaan struktur mikro serta sifat mekanis dari perlakuan panas konvensional dengan perlakuan subzero. Hasil penelitian ini mendapatkan penurunan jumlah austenite sisa 6,8% menjadi 3,9% pada as-quenched dengan as-subzero dan 2,7% menjadi 1,2% pada as-QTT dengan as-QSTT. Selain itu terjadi peningkatan sifat mekanis yaitu kekerasan dari 48,22 HRC atau 480 HV menjadi 48,8 HRC atau 490 HV pada produk jadi atau setelah as-QTT dan as-QSTT. Sehingga, penurunan jumlah austenite sisa dan peningkatan sifat mekanis yaitu kekerasan dapat dilakukan dengan perlakuan subzero.
The use of High Strength Low Alloy steel has become common in the industry, especially heavy equipment manufacturers. HSLA steel is used as a bucket tooth material which is one of the components in an excavator. The process of making bucket tooth goes through several stages of the heat treatment process starting from the casting results, in order normalization, pre-tempering, austenization, quenching, and double tempering. The heat treatment process still shows the presence of retained austenite which is enough to cause the phenomenon of delay crack due to retained austenite that is transformed and causes stress to the bucket tooth. This research will focus on decreasing the amount of retained austenite by one of the cooling methods namely subzero treatment and seeing its effect on the microstructure and mechanical properties of HSLA steel. Subzero treatment is carried out after the quenching process. Subzero treatment is done by cooling the steel to a temperature of -176oC, after which the heat treatment process will be continued, which is double tempering. This study will compare the results of as-quenched treatment with as-subzero and as-QTT with as-QSTT so that microstructure and mechanical properties of conventional heat treatment with subzero treatment will be obtained. The results of this study show a decrease in the amount of retained austenite from 6,8% to 3,9% in as-quenched with as-subzero, and 2,7% to 1,2% in as-QTT with as-QSTT. Also, there was an increase in mechanical properties which is hardness from 48,22 HRC or 480 HV to 48,8 HRC or 490 HV in the finished product or after as-QTT and as-QSTT. Thus, decreasing the amount of retained austenite and increasing mechanical properties which is hardness can be done by the subzero treatment.
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dino Adipradana Darwanto Haroen
Abstrak :

High-strength low alloy steel atau biasa disebut baja HSLA merupakan material yang digunakan untuk komponen excavator bucket tooth pada industri alat berat. Komponen ini diproduksi di Indonesia tanpa adanya kegagalan pada produk, namun ketika diekspor ke luar negeri, produk mengalami retak yang diindikasikan sebagai delayed crack. Penelitian sebelumnya menyatakan bahwa delayed crack ini terjadi akibat hadirnya austenit sisa yang merupakan fasa metastabil dan dapat bertransformasi secara isotermal menjadi fasa lain serta menghasilkan tegangan sisa sehingga berujung pada inisiasi retak. Penelitian ini memfokuskan pada metode untuk mengurangi jumlah austenit sisa dengan memvariasikan waktu tempering pada perlakuan double tempering (QTT). Namun, nilai kekerasan akhir juga dipertimbangkan pada penelitian ini agar sesuai pada standar komponen industri alat berat. Temperatur tempering yang digunakan adalah 205°C dan waktu tempering yang digunakan adalah 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), dan 107 menit x 2 (t4). Perlakuan tempering dapat secara efektif menurunkan jumlah austenit sisa karena ketika tempering austenit sisa akan terdekomposisi menjadi fasa lain. Selama perlakuan tempering juga, martensit akan terdekomposisi menjadi tempered martensite sehingga kehilangan sebagian atom karbonnya (loss of tetragonality) dan menjadi lebih lunak. Karakterisasi yang dilakukan pada penelitian ini adalah OM, SEM, Image-J (image analyzer), microvickers (kekerasan mikro), dan Rockwell C (kekerasan makro). Setelah dianalisis, penelitian ini mendapatkan hasil mikrostruktur berupa martensit (fresh martensite & tempered martensite), bainit (lower bainite), dan austenit sisa. Ditemukan pula karbida transisi pada bilah-bilah martensit. Ukuran fasa martensit (panjang bilah/jarum) tidak mengalami perubahan yang signifikan (cenderung seragam) seiring peningkatan waktu tempering. Peningkatan waktu tempering memengaruhi jumlah austenit sisa yang mengalami penurunan dan jumlah tempered martensite meningkat. Jumlah austenit sisa seiring peningkatan variabel waktu tempering mengalami penurunan dari 2.88%, 1.93%, 1.15%, dan 0.65%. Sementara itu, nilai kekerasan yang dihasilkan seiring meningkatnya waktu tempering adalah 49.43 HRC, 48.21 HRC, 47.78 HRC, dan 46.93 HRC dimana nilai kekerasan mengalami penurunan yang tidak signifikan. Maka, peningkatan waktu tempering dari 68 menit x 2 (t1), 81 menit x 2 (t2), 94 menit x 2 (t3), hingga 107 menit x 2 (t4) akan menurunkan potensi terjadinya delayed crack karena jumlah austenit sisa dapat berkurang, namun tetap memiliki nilai kekerasan yang baik.


The high-strength low alloy steel or commonly called HSLA steel is a material used for bucket tooth excavator components in the heavy equipment industry. This component was produced in Indonesia without product failure, but when exported abroad, the product experienced cracks which was indicated as delayed crack. Previous studies have suggested that this delayed crack occurred due to the presence of retained austenite which is a metastable phase and can be transformed isothermally into another phase and produces residual stress resulting in crack initiation. This study focuses on methods to reduce the amount of retained austenite by varying the tempering time in the double tempering (as-QTT) treatment. However, the final hardness value was also considered in this study to fit the heavy equipment industry component standard. The tempering temperature was 205°C and the tempering time was 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), and 107 minutes x 2 (t4). The tempering treatment can effectively reduce the amount of residual austenite because when tempering the retained austenite will decompose into another phase. During tempering too, martensite will decompose into tempered martensite so that it loses some of its carbon atoms (loss of tetragonality) and becomes softer. The characterizations carried out in this study are OM, SEM, Image-J (image analyzer), microvickers (micro hardness), and Rockwell C (macro hardness). After being analyzed, this study obtained the results of microstructure in the form of martensite (fresh martensite & tempered martensite), bainite (lower bainite), and retained austenite. Also found transition carbides on martensite laths. The size of the martensitic phase (length of the lath/needle) does not change significantly (tends to be uniform) with increasing tempering time. An increase in tempering time affects the amount of retained austenite that has decreased and the amount of tempered martensite increases. The amount of retained austenite with increasing tempering time variables decreased from 2.88%, 1.93%, 1.15%, to 0.65%. Meanwhile, the value of hardness produced with increasing tempering time was 49.43 HRC, 48.21 HRC, 47.78 HRC, and 46.93 HRC where the value of hardness experienced an insignificant decrease. Thus, increasing the tempering time from 68 minutes x 2 (t1), 81 minutes x 2 (t2), 94 minutes x 2 (t3), until 107 minutes x 2 (t4) will reduce the potential for delayed cracks to occur because the amount of retained austenite can be reduced, but still has a good hardness value.

Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Herfanola Hermawan
Abstrak :
Tool Steel merupakan jenis baja paduan khusus yang digunakan sebagai perkakas dimana aplikasinya untuk memotong dan membentuk material lain menggunakan baja perkakas maka dibutuhkan sifat mekanik yang baik. Fasa austenit sisa memiliki sifat yang lunak dan tidak stabil yang dapat merubah sifat mekanik dari baja perkakas sehingga austenit sisa dalam jumlah yang banyak cenderung menurunkan sifat mekanik dari baja perkakas. Penelitian ini menggunakan AISI O1 tool steel yang merupakan salah satu jenis cold work tool steel dengan variasi temperatur austenisasi yaitu 750, 800, 850, 900, dan 950oC. Penelitian ini difokuskan untuk menentukan temperatur austenisasi yang paling optimal dimana jumlah austenit sisa paling ideal pada material baja AISI O1 dengan tetap mempertahankan kekerasan dari material baja AISI O1 sesuai aplikasi yang diinginkan. Metode karakterisasi yang digunakan dalam penelitian ini adalah Optical Microscope dengan software image-J, dan uji kekerasan Brinell dan Vickers. Fasa yang terkandung pada mikrostruktur secara umum adalah martensit berbentuk jarum, bainite island, austenit sisa, dan fasa karbida yang jumlahnya sangat sedikit. Meningkatnya temperatur austenisasi menyebabkan jumlah karbida yang terlarut semakin banyak, jumlah austenit sisa semakin banyak pada sampel As Quench (γr 1,57% - 7,46%) maupun sampel As Temper (γr 1,23% - 5,66%). dan fasa martensit menjadi lebih kasar. Meningkatnya temperatur austenisasi menyebabkan peningkatan nilai kekerasan sampel As Quench maupun sampel As Temper pada temperatur 750oC - 800oC dan menurunnya nilai kekerasan pada temperatur 800oC – 950oC yang disebabkan faktor kandungan karbon dan paduan pada matriks, jumlah austenit sisa, dan besar butir. Tidak ada pengaruh yang signifikan antara sampel As Quench dengan sampel As Temper terhadap mikrostruktur, jumlah austenit sisa, dan nilai kekerasan. Temperatur austenisasi paling ideal terdapat pada variabel 800oC dimana sampel as Quench dan As Temper berturut – turut memiliki nilai 4,62% dan 3,84% dengan nilai kekerasan sebesar 756,6 HB dan 685,52 HB. ......Tool Steel is a special type of alloy steel used as a tool where the application to cut and form other materials. Tool steel required good mechanical properties. Retained austenite has soft and unstable properties that can change the mechanical properties of tool steel so that a large amount of retained austenite tends to lower the mechanical properties of tool steel. This study uses AISI O1 tool steel which is a type of cold work tool steel with austenitizing temperature variations of 750, 800, 850, 900, and 950oC. This research is focused on determining the most optimal austenitizing temperature where the most ideal amount of retained austenite in AISI O1 while maintaining the hardness of the AISI O1 according to the desired application. The characterizations carried out in this study are Optical Microscope with software Image-J, Brinell hardness test, and Vickers hardness test. The phases contained in the microstructure, in general, are needle-shaped martensite, bainite island, retained austenite, and a very small carbide phase. Increased austenitizing temperatures cause the number of dissolved carbides to increase, the number of retained austenite is increasing in the As Quench sample (γr 1.57% - 7.46%) as well as the As Temper sample (γr 1.23% - 5.66%), and the martensite phase becomes coarser. Increased austenitizing temperatures led to an increase in the hardness value of As Quench and As Temper samples at 750oC - 800oC and decreased hardness values at 800oC – 950oC due to the effect of carbon and alloy content in the matrix, the amount of retained austenite, and grain size. There was no significant influence between the As Quench sample and the As Temper sample on the microstructure, the amount of retained austenite, and the hardness value. The most optimal austenitizing temperature is found in the variable 800oC where the sample as Quench and As Temper respectively have a value of 4,62% and 3,84% with a hardness value of 756,6 HB and 685,52 HB.
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rifka Maulidya
Abstrak :
Austenit sisa bersifat metastabil pada suhu ruang sehingga dapat bertransformasi menjadi martensit sehingga menyebabkan delayed crack, yang terjadi setelah beberapa lama proses produksi, pada bucket tooth excavator dengan material baja HSLA. Penelitian ini berfokus pada proses perlakuan panas yang dilakukan, yaitu pada tahapan austenisasi. Austenisasi dilakukan pada temperature 926°C dengan variable waktu tahan 28 menit, 43 menit, 58 menit, dan 73 menit. Sampel pengujian awalnya berupa keel block hasil normalisasi temper, yang kemudian dipotong menjadi balok dengan dimensi 4x1x4 cm. Karakterisasi dilakukan pada sampel as-QTT dan setelah ditempering, dimulai dari pengamatan struktur mikro menggunakan mikroskop optic dan Scanning Electron Microscope (SEM), serta pengujian kekerasan mikro (microvickers) dan kekerasan makro (Rockwell C). Setelah diamati, diperoleh bahwa sampel baja as-QTT memiliki struktur mikro yang didominasi oleh tempered martensit, namun ditemukan juga keberadaan lower bainite dan sejumlah kecil austenite sisa. Semua variabel temperatur tempering menghasilkan bentuk struktur mikro yang sama, namun memiliki presentase austenite sisa yang berbeda-beda. Seiring bertambahnya waktu tahan austenisasi, ukuran butir dan martensite menjadi semakin kasar. Kekerasan baja mengalami peningkatan seiring bertambahnya waktu austenisasi yaitu dari 486 HV menjadi 522 HV pada waktu tahan 58 menit, lalu menurun menjadi 450 pada waktu tahan 73 menit.
ABSTRACT
Retained Austenite is metastable at room temperature so that it can be transformed into martensite, causing delayed cracks, which occur after a long time of the production process, on bucket tooth excavators with HSLA steel material. This research focus on the heat treatment process carried out, especially in the austenitizing stage. Austenitizing was carried out at a temperature of 926°C with a variable holding time of 28 minutes, 43 minutes, 58 minutes, and 73 minutes. Initially the test sample was a tempered normalized keel block, which was then cut into blocks with dimensions of 4x1x4 cm. Characterization is carried out on as-QTT samples and after tempering, starting from observing microstructure using optical microscopy and Scanning Electron Microscope (SEM), as well as testing micro hardness (microvickers) and macro hardness (Rockwell C). After observing, it was found that the as-QTT steel sample had a micro structure dominated by tempered martensite, but the presence of lower bainite and a small amount of remaining austenite was also found. All tempering temperature variables produce the same microstructure, but have different residual austenite percentages. As the austenisation holding time increases, grain size and martensite become increasingly coarse. The hardness of steel has increased with increasing austenisation time from 486 HV to 522 HV at 58 minutes holding time, then decreased to 450 at 73 minutes holding time.

2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>