Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Rizky Ginanjar
"ABSTRAK
Skizofrenia telah diderita oleh lebih dari 21 juta orang di seluruh dunia. Masalah
genetik dan lingkungan menjadi salah satu faktor yang berkontribusi dalam
perkembangan penyakit ini. Beberapa penelitian menunjukkan beberapa gen yang
berhubungan dapat meningkatkan risiko penyakit ini. Gen-gen kandidat yang
diperoleh dari beberapa penelitian ternyata membentuk sebuah jaringan besar pada
interaksi tingkat proteinnya. Oleh karena itu, perlu dilakukan studi terhadap
jaringan interaksi protein dari gen kandidat. Algoritma Regularized Markov
Clustering (RMCL) adalah salah satu metode graph clustering yang merupakan
pengembangan dari algoritma Markov Clustering (MCL). Dalam skripsi ini,
dibahas mengenai implementasi algoritma RMCL pada data jaringan interaksi
protein gen-gen kandidat faktor risiko skizofrenia yang dibangun menggunakan
bahasa pemrograman R. Simulasi algoritma RMCL dilakukan dengan parameter
penggelembungan berbeda-beda. Kemudian, hasil simulasi algoritma RMCL
dibandingkan dengan hasil simulasi algoritma MCL dengan parameter yang sama.
Algoritma RMCL memberikan hasil dalam bentuk overlapping cluster, hal ini
menunjukkan keterikatan antar cluster yang terbentuk. Sehingga, berdasarkan
hasil simulasi algoritma RMCL, terdapat hubungan antar cluster protein dari
beberapa gen kandidat, salah satunya adalah hubungan gen NRG1 dan CACNG2.

ABSTRACT
Schizophrenia has been suffered by over 21 million people worldwide. Genetic
and environmental issues are one of the contributing factors in the development of
this disease. Some research suggests that several related genes may increase the
risk of this disease. Candidate genes that obtained from several research turns up a
large network of protein-protein interaction. Therefore, it is necessary to study the
protein-protein interaction network of the candidate gene. Regularized Markov
Clustering Algorithm (RMCL) is a graph clustering method which is the
development of Markov Clustering Algorithm (MCL). This minithesis discussed
about implementation of the RMCL algorithm on protein-protein interaction
networks on schizophrenia?s risk factors candidate genes data that is built using a
programming language R. RMCL algorithm simulation performed with different
inflation parameters. Then, the results of the RMCL algorithm simulation
compared with MCL algorithm simulation with the same parameters. RMCL
algorithm provides results in the form of overlapping clusters, which mean there
are relation between clusters. Thus, based on the results of RMCL algorithm
simulation, there are relation between protein clusters of several candidate genes,
one of which is the relationship of gene NRG1 and CACNG2."
2016
S63944
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tampubolon, Patuan Pangihutan
"Kebutuhan untuk mendapatkan pola yang terbentuk dari matriks biner pada masa ini dan mendatang, meningkat dengan pesat. Data dari 'clickstream' pengguna internet, 'face-recognition', matriks setelah dilakukan prapengolahan dari data kategorik, interaksi protein-protein dan masih banyak daftar lainnya yang menghasilkan matriks biner. Salah satu pola yang dapat dibentuk dari matriks biner merupakan satu himpunan submatriks yang semua entrinya bernilai 1. Submatrik tersebut disebut dengan 'bicluste''r' dengan jenis nilai konstan. Permasalahan dari pembentukan 'bicluster' disebut dengan 'biclustering'. Permasalahan tersebut tergolong dalam permasalahan 'NP-complete'. Meskipun demikian, hasil yang suboptimal mampu didapatkan dengan membuat algoritma 'biclustering'.
Penelitian ini mengusulkan suatu algoritma 'biclustering' baru dengan menggunakan jarak 'Hamming' antara satu kolom dengan kolom yang lainnya pada matriks biner. Algoritma yang diberi nama 'bicHPT' ('biclustering based on Hamming distance Pattern Table') ini, mampu membuat satu himpunan 'bicluster' dengan lima langkah, yaitu mereduksi kolom matriks, membuat tabel jarak 'Hamming', mencari kandidat 'bicluster', menyaring kandidat 'bicluster', dan membentuk 'bicluster'. Setelah uji coba performa, algoritma 'bicHPT' mampu menghasilkan satu himpunan 'bicluster', bahkan mampu mengungguli algoritma lain dalam hal jumlah 'bicluster' yang dibentuk. Algoritma ini juga mampu untuk diaplikasikan sebagai salah satu unsur yang digunakan untuk memprediksi interaksi protein-protein baru, antara protein 'Human Immunodeficiency Virus type' 1 (HIV-1) dan protein manusia. Total interaksi baru yang didapatkan dengan menggunakan algoritma ini ada sebanyak 482 interaksi.
......
The demand to obtain patterns from a binary matrix today and in the future is rapidly increasing. Data from internet users clickstreams, face-recognition, the matrix after preprocessing categorical data, protein-protein interactions, and so on that will produce a binary matrix. One kind of pattern that might be obtained from a binary matrix is a set of submatrices which all their entries have the value of 1. A submatrix is called with bicluster with constant values. The problem to make biclusters is called with biclustering. This problem is NP-complete. Although, the suboptimal solution might be obtained with constructing a biclustering algorithm.
This research proposes a novel biclustering algorithm based on Hamming distance among each column in a binary matrix. The algorithm which called with \pt (biclustering based on Hamming distance Pattern Table) can produce biclusters in 5 steps, which are, the column reduction of the matrix, constructing Hamming distance table, finding bicluster candidate, filtering bicluster candidate and forming the biclusters. After testing the performance, this algorithm can produce biclusters. Moreover, it can outperform another algorithm in numbers of biclusters. This algorithm is also succeeded to be applied as one of the elements to predict protein-protein interaction between Human Immunodeficiency Virus type 1 protein (HIV-1) and human protein. The total new interactions which using this algorithm are 482 interaction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T52670
UI - Tesis Membership  Universitas Indonesia Library
cover
Ida Mujtahidah
"ABSTRAK
Protein memiliki peranan penting dalam mengontrol fungsi enzim, mengatur produksi dan aktivitas di dalam sel. Untuk melakukan hal ini, protein berinteraksi dengan protein-protein lainnya, DNA dan molekul-molekul lainnya. Jaringan interaksi protein-protein ini memiliki ukuran yang sangat besar. Sehingga untuk memudahkan dalam menganalisis jaringan ini diperlukan metode clustering. Pada penelitian ini, algoritma Markov clustering digabungkan dengan algoritma firefly yang disebut sebagai algoritma firefly-Markov clustering FMCL . Pada algoritma FMCL, posisi kunang-kunang akan menggantikan nilai parameter inflate. Kemudian proses clustering akan berlangsung menggunakan algoritma Markov clustering MCL . Selanjutnya posisi kunang-kunang akan terus diperbarui dan proses clustering akan terus dilakukan sampai diperoleh hasil clustering terbaik. Komputasi paralel pada algoritma FMCL menggunakan OpenMP. Setiap thread menjalankan proses pada Markov clustering menggunakan parameter inflate yang ditentukan oleh posisi kunang-kunangnya. Hasil yang diperoleh pada data jaringan interaksi protein HIV ada 4 cluster. Dari 4 cluster ini terdapat satu cluster besar yang saling terhubung dengan 6 pusat cluster lainnya yaitu NEF, GAG, GAG-POL, VPR, VIF dan VPU. Pada 3 cluster lainnya yang menjadi pusat cluster adalah TAT, REV dan ENV. Sedangkan dengan menggunakan data jaringan interaksi protein pada Human Herpesvirus tipe 4 HHV-4 diperoleh 14 cluster. Protein yang menjadi pusat cluster adalah EBNA-LP, BKRF1, BPLF1, LMP1, SUMO2, BBLF2-BBLF3, EBNA3B, BRLF1, BGLF4, BYRF1. Selain itu, juga dapat dilihat bahwa ada beberapa cluster yang hanya merupakan interaksi antara dua protein yaitu BBRF1 dengan NFKB2, EBNA3A dengan CHEK2, LMP2A dengan ITCH, dan EBNA3C dengan EP300. Speed up algoritma FMCL yang dijalankan menggunakan OpenMP pada data HIV dan HHV-4 adalah 4.73x dan 3.21x lebih cepat dibandingkan dengan algoritma FMCL yang dijalankan secara sekuensial.

ABSTRACT
Protein plays an important role in controlling enzyme function, regulating production and activity in cell. To do this function, proteins will interact with other protein, DNA and other molecules. Protein interaction network have a very large size. Then to simplify analyzing this network is required clustering method. In this study, Markov clustering algorithm combined with a firefly algorithm called firefly Markov clustering algorithm FMCL . In FMCL algorithm, firefly position will be replace the value of inflate parameter. Then clustering process will take place using Markov clustering algorithm MCL . Futhermore, the firefly position will be updated and clustering process will be continue until its get the best clustering. Parallel computing on FMCL algorithm using OpenMP. Each thread will run the process on Markov clustering by using inflate parameter specified by the position of firefly. The clustering result from protein interaction network on HIV is 4 clusters. From this cluster, there is a large cluster connected with 6 other cluster centers, they are NEF, GAG, GAG POL, VPR, VIF and VPU. In the 3 other clusters that become the center of the cluster are TAT, REV and ENV. While by using protein interaction network on HHV 4 obtained 14 clusters. The proteins that become the center of the clusters are EBNA LP, BKRF1, BPLF1, LMP1, SUMO2, BBLF2 BBLF3, EBNA3B, BRLF1, BGLF4 and BYRF1. In addition, it can be seen that there are several clusters that are just interaction between two proteins, BBRF1 with NFKB2, EBNA3A with CHECK2, LMP2A with ITCH and EBNA3C with EP300. The speed up of FMCL algorithm by using OpenMP HIV and HHV 4 data is 4.73x and 3.21x faster than the sequentially executed."
2018
T49526
UI - Tesis Membership  Universitas Indonesia Library
cover
Olivia Swasti
"Human Immunodeficiency Virus (HIV) merupakan virus yang menyerang sistem kekebalan tubuh manusia. Virus ini terdiri dari 23 protein dalam RNA untai tunggal. Interaksi protein HIV dan protein manusia dapat mengakibatkan penyakit AIDS. Dengan mempelajari interaksi protein dapat digunakan untuk mengembangkan obat antiviral. Untuk menganalisis interaksi protein dilakukan dengan proses biclustering. Algoritma LCM-MBC merupakan suatu algoritma biclustering yang digunakan untuk menganalisis interaksi protein.
Hasil dari biclustering digunakan untuk memprediksi dengan association rule mining. Untuk mengetahui fungsi-fungsi biologis dari protein yang terdapat pada satu bicluster digunakan DAVID Gene Ontology. Terdapat 45 bicluster yang memiliki protein HIV dalam satu bicluster sebanyak lima. Dari bicluster yang diperoleh ini, Terdapat 11 protein HIV-1 yang diprediksi akan berinteraksi dengan 36 protein manusia. Jika protein manusia terhubung dengan protein HIV sesuai dengan tipe jenis interaksinya, artinya protein manusia tersebut berinteraksi dengan proten HIV-1.
......Human Immunodeficiency Virus (HIV) is a virus w attacks the human immune system. This virus consists of 23 proteins in a single-stranded RNA. The protein interaction between HIV proteins and human proteins can impact to AIDS The research about HIV-1 proteins and human proteins interactions leads to the insight of drug target prediction. To analyze protein interactions carried out by biclustering process. The LCM-MBC algorithm is a biclustering algorithm that is used to analyze protein interactions.
The results of biclustering are used to predict with association rule mining. To find out the biological functions of proteins found in one cluster used DAVID Gene Ontology. There are 45 bicluster that have five HIV proteins in one bicluster. From the bicluster obtained, there are 11 HIV-1 proteins that are predicted to interact with 36 human proteins. If human protein interacts with HIV-1 protens, it means that human proteins will relate according to the interaction type by HIV proteins."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54287
UI - Tesis Membership  Universitas Indonesia Library
cover
Feby Lilia Rosa
"Kanker kolorektal merupakan masalah kesehatan masyarakat global dengan prevalensi tinggi yang pengobatannya masih memiliki keterbatasan. Senyawa flavonoid terutama kuersetin dinilai memiliki aktivitas biologis sebagai antikanker, sehingga beberapa senyawa flavonoid lainnya diharapkan juga memiliki aktivitas serupa. Tujuan dari studi ini adalah melakukan analisis secara in-silico dan in-vitro terhadap beberapa senyawa flavonoid terutama kuersetin dan turunannya sebagai agen apoptosis sel kanker kolorektal HT-29. Metode yang dilakukan secara in-silico meliputi jejaring farmakologi dan simulasi molekuler. Senyawa terbaik berdasarkan analisis in-silico diuji secara in-vitro dengan menilai aktivitas sitotoksisitasnya pada sel HT-29 menggunakan metode MTT Assay dan apoptosisnya dianalisis menggunakan flow cytometry. Protein target yang memiliki interaksi dengan kuersetin dan senyawa turunannya yaitu AKT1, APAF1, BCL2, CASP3, MAPK1 dan CASP9. Berdasarkan analisis prediksi ADMET, kuersetin dan turunannya masuk dalam kategori aman sebagai kandidat obat. Dua senyawa terbaik berdasarkan analisis in-silico yakni isoramnetin dan isokuersitrin dipilih untuk diuji secara in-vitro. Aktivitas sitotoksik kuersetin, isoramnetin dan isokuersitrin terhadap sel HT-29 dinyatakan dengan nilai CC50 berturut-turut 158,92mm + 5,4, 65,52mm + 5,0 dan 47,59mm + 2,5. Aktivitas apoptosis mencapai 16,7% hingga 62,4% jika dibandingkan dengan kontrol sel. Isoramnetin dan Isokuersitrin sebagai senyawa flavonoid turunan kuersetin berpotensi sebagai agen apoptosis sel kanker kolorektal HT-29.Kanker kolorektal merupakan masalah kesehatan masyarakat global dengan prevalensi tinggi yang pengobatannya masih memiliki keterbatasan. Senyawa flavonoid terutama kuersetin dinilai memiliki aktivitas biologis sebagai antikanker, sehingga beberapa senyawa flavonoid lainnya diharapkan juga memiliki aktivitas serupa. Tujuan dari studi ini adalah melakukan analisis secara in-silico dan in-vitro terhadap beberapa senyawa flavonoid terutama kuersetin dan turunannya sebagai agen apoptosis sel kanker kolorektal HT-29. Metode yang dilakukan secara in-silico meliputi jejaring farmakologi dan simulasi molekuler. Senyawa terbaik berdasarkan analisis in-silico diuji secara in-vitro dengan menilai aktivitas sitotoksisitasnya pada sel HT-29 menggunakan metode MTT Assay dan apoptosisnya dianalisis menggunakan flow cytometry. Protein target yang memiliki interaksi dengan kuersetin dan senyawa turunannya yaitu AKT1, APAF1, BCL2, CASP3, MAPK1 dan CASP9. Berdasarkan analisis prediksi ADMET, kuersetin dan turunannya masuk dalam kategori aman sebagai kandidat obat. Dua senyawa terbaik berdasarkan analisis in-silico yakni isoramnetin dan isokuersitrin dipilih untuk diuji secara in-vitro. Aktivitas sitotoksik kuersetin, isoramnetin dan isokuersitrin terhadap sel HT-29 dinyatakan dengan nilai CC50 berturut-turut 158,92mm + 5,4, 65,52mm + 5,0 dan 47,59mm + 2,5. Aktivitas apoptosis mencapai 16,7% hingga 62,4% jika dibandingkan dengan kontrol sel. Isoramnetin dan Isokuersitrin sebagai senyawa flavonoid turunan kuersetin berpotensi sebagai agen apoptosis sel kanker kolorektal HT-29.
......Colorectal cancer is a global public health problem with a high prevalence, and its treatment still has limitations. Flavonoid compounds, especially quercetin, are considered to have biological activity as an anticancer, so several other flavonoid compounds are also expected to have similar activity. This study aimed to perform in-silico and in-vitro analysis of several flavonoid compounds, especially quercetin and its derivatives as apoptotic agents for colorectal cancer cells HT-29. The in silico method includes network pharmacology and molecular simulations. The best compounds based on in silico analysis were tested in-vitro by assessing their cytotoxic activity in HT-29 cells using the MTT Assay method. Their apoptosis was analyzed using flow cytometry. Target proteins interacting with quercetin and its derivatives are AKT1, APAF1, BCL2, CASP3, MAPK1 and CASP9. Based on ADMET prediction analysis, quercetin and its derivatives are included in the safe category as drug candidates. The best compounds based on in-silico analysis, isorhamnetin and isoquercitrin, were selected to be tested in-vitro. The cytotoxic activity of quercetin, isorhamnetin and isoquercitrin against HT-29 cells was expressed by CC50 values of 158.92 mm + 5.4, 65.52 mm + 5.0 and 47.59 mm + 2.5, respectively. Apoptotic activity reached 16.7% to 62.4% when compared to control cells. Isoramnetin and isoquercitrin, flavonoid compounds derived from quercetin, have potential apoptotic agents for HT-29 colorectal cancer cells."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
M. Syamsuddin Wisnubroto
"ABSTRAK
Protein memiliki peranan yang sangat penting dalam kehidupan. Setiap protein
berinteraksi dengan protein-protein lain, DNA, dan molekul-molekul lainnya, sehingga
terbentuklah jaringan interaksi protein yang berukuran sangat besar. Untuk memudahkan
dalam menganalisisnya, diperlukan metode clustering. Algoritma Soft Regularized
Markov Clustering (SR-MCL) merupakan pengembangan metode clustering yang
mengurangi kelemahan dari Regularized Markov Clustering dan Markov Clustering.
Namun, SR-MCL masih memiliki kelemahan yaitu parameter inflasi yang selalu
dimasukkan secara manual oleh peneliti. Penelitian ini, SR-MCL digabung dengan
Algoritma Firefly yang selanjutnya disebut Firefly Soft Regularized Markov Clustering,
dimana posisi setiap firefly menggantikan parameter inflasi. Posisi firefly akan terus
diperbaharui dan proses clustering akan terus dilakukan sampai memperoleh global chaos
kurang dari threshold. FSR-MCL akan diterapkan secara paralel menggunakan OpenMP,
yaitu setiap thread menjalankan SR-MCL dengan posisi setiap firefly yang berbeda.
Proses clustering data HIV-1 diperoleh sembilan protein sebagai pusat cluster yang
sangat berpengaruh dalam pembentukan dan penyebaran virus, yaitu TAT, REV, ENV,
GAG, POL, VPU, VPR, NEF, dan VIF, serta didapat parameter inflasi terbaiknya 8,0
dengan speed up 4,66 kali. Proses clustering data SC5314 diperoleh enam protein sebagai
pusat cluster yang merupakan protein penting dalam penyebarannya, yaitu HSP90,
CBK1, MED8, NOP1, CEK1, dan CDC4, serta didapat parameter inflasi terbaiknya 5,5
dengan speed up 3,01 kali.

ABSTRACT
Protein has a very important role in life. Each protein interacts with other proteins, DNA,
and other molecules, resulting in a very large protein-protein interaction. To make it easier
to analyze it, clustering method is needed. Soft Regularized Markov Clustering (SRMCL)
algorithm is a development of clustering method that reduces the weakness of
Regularized Markov Clustering and Markov Clustering. However, SR-MCL still has a
weakness that is the parameter of inflation that is always entered manually by researchers.
This study, SR-MCL combined with Firefly Algorithm, hereinafter called Firefly Soft
Regularized Markov Clustering, where the position of each firefly replace the parameters
of inflation. The firefly position will continue to be updated and the clustering process
will continue until the global chaos is less than the threshold. FSR-MCL will be applied
in parallel using OpenMP, ie each thread runs SR-MCL with the position of each different
firefly. The process of clustering the HIV-1 data obtained by nine proteins as the center
of the cluster is very influential in the formation and spread of the virus, namely TAT,
REV, ENV, GAG, POL, VPU, VPR, NEF, and VIF, and got the best inflation parameter
8.0 with speed up 4.66 times. SC5314 data clustering process obtained six proteins as the
center of the cluster which is an important protein in its spreading, namely HSP90, CBK1,
MED8, NOP1, CEK1, and CDC4, and got the best inflation parameter 5.5 with speed up
3.01 times."
2018
T49442
UI - Tesis Membership  Universitas Indonesia Library
cover
Vira Yustia Nurazmi
"ABSTRAK
Algoritma Regularized Markov Clustering RMCL adalah suatu metode graf clustering yang merupakan pengembangan dari Markov Clustering MCL . Algoritma RMCL masih memiliki kelemahan pada parameter penggelembungan yang biasanya selalu diinputkan oleh pengguna untuk mendapatkan hasil clustering yang baik. Pada penelitian ini, RMCL digabungkan dengan algoritma Firefly untuk menganalisis jaringan interaksi protein yang disebut algoritma Firefly Regularized Markov Clustering FRMCL . Algoritma Firefly merupakan algoritma yang terinspirasi dari perilaku kunang-kunang dalam mencari koloninya. Implementasi algoritma FRMCL dilakukan pada data jaringan interaksi protein HIV-1 dan Human Herpesvirus 1. Data yang digunakan direpresentasikan ke dalam sebuah graf tak-berarah . Selanjutnya, posisi kunang-kunang pada algoritma firefly akan berperan sebagai parameter penggelembungan. Setiap firefly akan melakukan proses RMCL, sehingga diperoleh beberapa hasil RMCL dengan parameter berbeda. Setiap proses RMCL memberikan nilai global chaos, yang dipilih adalah global chaos minimum yang akan dijadikan best firefly, kemudian akan dilakukan proses perhitungan kembali. Posisi firefly baru ini selanjutnya bertindak sebagai parameter penggelembungan yang baru dan dilakukan proses FRMCL berlanjut hingga diperoleh cluster terbaik. Komputasi paralel akan digunakan saat setiap firefly menjalankan proses FRMCL dengan bahasa pemrograman OpenMP. Berdasarkan hasil simulasi yang dilakukan, diperoleh 14 cluster untuk data Human Herpesvirus 1 dan 4 cluster untuk data HIV-1. Sedangkan proses paralel yang dilakukan pada kedua data PPI tersebut diperoleh running time dan speed up yang menunjukkan komputasi paralel menggunakan 8 thread diperoleh 3,66x dan 4,51x lebih cepat dibandingkan dengan komputasi sekuensial.

ABSTRACT
Regularized Markov Clustering RMCL algorithm is a clustering graph method which is the development of Markov Clustering MCL . The RMCL algorithm still has weaknesses on inflate parameters that are usually always input by the user to get best clustering results. In this research, RMCL combined with the Firefly algorithm to analyze a protein interaction network called the Firefly Regularized Markov Clustering FRMCL algorithm. The Firefly algorithm is an algorithm that is inspired by the behavior of fireflies looking for their colonies. Implementation of the FRMCL algorithm was carried out on the data network of HIV 1 protein interactions and Human Herpesvirus 1. The data used to be represented in an undirected graph G. Then, firefly position on the firefly algorithm will act as an inflate parameter. Every firefly will perform the RMCL process, and then obtained some RMCL results with different parameters. Each RMCL process give generated from global chaos, which will be selected minimum global chaos which will be the best firefly, it will be processed back again. This new firefly position will act as a new inflate parameter and perform the FRMCL process until to produce the best clusters. Parallel computations will be used when each firefly runs the FRMCL process with the programming language using OpenMP. Based on the results of the simulation, 14 clusters are obtained for Human Herpesvirus 1 and 4 cluster data for HIV 1 data. The parallel processing performed on both PPI data is due to running time and speed shows 3,66x and 4,51x parallel computing using 8 thread which faster than sequential computing."
2018
T49488
UI - Tesis Membership  Universitas Indonesia Library