Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Rahmi Azitha
"ABSTRACT
Peningkatan jumlah pengguna internet mendorong organisasi, perusahaan, dan lembaga lain untuk berinteraksi dengan publik melalui berbagai media online. Situs website adalah contoh saluran informasi online yang digunakan oleh kelompok organisasi yang memungkinkan para pengunjung melakukan pencarian informasi didalamnya. Website SIMAK adalah website milik Universitas Indonesia yang mendistribusikan informasi mengenai cara masuk Universitas Indonesia. Ekstraksi pola perilaku pengunjung pada website SIMAK penting dilakukan untuk mengetahui tren terhadap pencarian informasi dan pengaksesan tampilan halaman yang terdapat di laman website. Hal ini dilakukan untuk meningkatkan kualitas website SIMAK dalam hal kemudahan aksesibilitas pengguna yang lebih baik. Namun, pola penggalian di website SIMAK belum pernah dilakukan sebelumnya. Sementara itu, website SIMAK merupakan salah satu website yang paling banyak dikunjungi oleh publik. Penelitian ini dilakukan dengan menggunakan pattern mining, salah satu aplikasi pengekstraksian pola pencarian informasi yang dilakukan oleh pengunjung website untuk mengetahui pola perilaku pengunjung melalui situs website SIMAK. Data web log pengunjung website SIMAK selama bulan Februari, Maret, dan April digunakan dalam penelitian ini sebagai representasi tingginya aktivitas website dalam kurun waktu satu tahun menggunakan teknik association rules. Hasil pengolahan data kategorisasi umum menunjukkan bahwa terdapat satu pola aturan unik pada bulan Februari dan Maret, dan tiga pola aturan unik di bulan April. Selain itu, pada data berkategorisasi khusus terdapat delapan pola aturan unik di bulan Februari, tiga pola aturan unik di bulan Maret dan enam pola aturan unik di bulan April. Aturan pola yang ditemukan ini menggambarkan pola perilaku pengunjung dalam melakukan pencarian informasi melalui situs website SIMAK.

ABSTRACT
The increasing amount of internet usage encourages organizations, companies, and other institutions to engage with the public through various online media. Website is an example of online information channel for those institutions, enabling the visitors to search detailed information. SIMAK Website is a website owned by the Universitas Indonesia that distributes information on getting through Universitas Indonesia. Extracting pattern of website visitors behavior is important to find out the trend on information searching and page accessing. Thus, the website can be improved to have better accessibility and user performance. However, the extracting pattern in the SIMAK website is not often conducted while this website is one of the highest number vistitors. This study was conducted using pattern mining, one of the applications of web usage mining, to find out patterns and trend of visitors behavior in information searching through SIMAK website. Visitors web log data of the SIMAK website in February, March, and April was processed by association rules method as those three months have the highest number of visitors activities in accessing website information in a year. The results show that general categorized data have one unique pattern in February and March, and three unique patterns in April. Meanwhile, the distinctive categorized data have eight unique patterns in February, three unique patterns in March, and six unique patterns in April. The rules patterns found describe the visitors behavior which may occur due to the information search on SIMAK website."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asma Rosyidah
"Penerapan strategi pemasaran memainkan peranan penting dalam upaya meningkatkan jumlah penjualan dan penetrasi pasar, terutama pada kondisi pasar yang kompetitif. Dalam pendekatan geomarketing, analisis spasial dari pola persebaran pelanggan digunakan sebagai bahan pertimbangan untuk menentukan strategi pemasaran yang komperhensif. Oleh karena itu, penelitian ini dilakukan dengan tujuan untuk melihat pola spasial persebaran pelanggan layanan jaringan internet berbasis fixed broadband dari data pelanggan yang berbasis kepada sistem informasi geografis. Penelitian ini dilakukan menggunakan metode analisis spasial, yaitu spatial join, query, kernel density estimation, dan space time pattern mining. Hasil yang diperoleh dari penelitian ini memberikan gambaran mengenai pemetaan wilayah pelanggan dalam bentuk peta tematik dan heatmap.
......The implementation of marketing strategy plays an important role in increasing the number of sales and market penetration, especially in competitive market. In geomarketing approach, spatial analysis of customer distribution patterns is used as a parameter to determine a comprehensive marketing strategy. Therefore, this study was conducted to find the spatial patterns of fixed broadband customer distribution from geographic information system based customer data. This research was conducted using spatial analysis methods, which are spatial join, query, kernel density estimation, and space time pattern mining. The results obtained from this study provide an overview of customer area mapping in the form of thematic map and heatmap."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68244
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sitanggang, Imas Sukaesih
"Indonesia has the world's largest tropical peatlands of about 14.9 million hectares that have important life support roles. However, fire frequently occurs in peatlands. According to experts and field forest fire fighters, fire hotspots that appear in a sequence of two to three days at the same location has a high potential of becoming a forest fire. This study aimed to determine the sequential patterns of hotspot occurrences, classify satellite image data and identify the fire spots. Fire spot identification was done using hotspot sequence patterns that were overlaid with burned area classification results. Sequential pattern mining using the Prefix Span algorithm was applied to identify sequences of hotspot occurrence. Maximum Likelihood method was applied to classify Landsat 7 satellite images toward identifying burned areas in Pulang Pisau and Palangkaraya in Central Kalimantan and Pontianak in West Kalimantan. Sequence patterns were overlaid with image classification results. The study results show that in Pulang Pisau, 26.19% of sequence patterns are located in burned areas and 72.62% sequence patterns were found in the buffer of burned area within a radius of one kilometer. As for Palangkaraya, there were 62.50% sequence patterns located in burned areas and 87.50% sequence patterns in the buffer of burned area with the radius of one kilometer. In total, Â there were 72.62% and 87.50% fire hotspots recorded in Pisau and Palangkaraya, respectively which are strong indicators of peatland fires."
Bogor: Seameo Biotrop, 2018
634.6 BIO 25:3 (2018)
Artikel Jurnal  Universitas Indonesia Library