Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Anastia Dewi L.
"Model regresi logistik dua level merupakan analisis multilevel yang digunakan untuk menganalisis data yang mempunyai struktur hirarki dua level dengan data respon biner (bernilai 0 atau 1). Yang dimaksud dengan data hirarki adalah data dengan unit-unit observasi yang bersarang pada unit yang lebih tinggi. Dalam skripsi ini, bentuk model regresi logistik dua level difokuskan pada model regresi logistik dua level dengan random intercept. Metode penaksiran parameter yang adalah metode Penalized Quasi Likelihood order pertama (PQL-1). Prinsip umum dari metode ini adalah melinierkan bagian yang non-linier dari model regresi logistik dua level dengan perluasan deret Taylor order pertama sehingga didapat model linier 2-level untuk kemudian dilakukan pengestimasian parameter menggunakan Iterative Generalized Least Square (IGLS). Prosedur tersebut dilakukan secara iteratif sampai konvergen. Metode ini diaplikasikan pada data survey di Eropa mengenai faktor-faktor yang mempengaruhi seseorang dalam penggunaan hak pilihnya dalam pemilu. Data terdiri dari 3300 individu yang diambil secara acak dari 20 negara di Eropa."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27691
UI - Skripsi Open  Universitas Indonesia Library
cover
Putu Jaya Adnyana Widhita
"Salah satu bahan tambang yang penting dan banyak dipakai adalah bauksit. Daerah Mempawah, Kalimantan merupakan salah satu daerah penambangan bauksit yang ada di Indonesia. Dalam kasus pengeksplorasian bahan tambang sering ditemukan permasalahan seberapa banyak cadangan bahan tambang yang tersedia di suatu lokasi. Dalam penelitian ini dilakukan penaksiran kandungan cadangan bauksit di Mempawah dengan menggunakan metode penaksiran ordinary kriging dengan semivariogram anisotropik. Metode penaksiran ordinary kriging merupakan metode yang memberikan penaksir yang linier tak bias terbaik (BLUE = best linear unbiased estimator). Dari hasil penelitian disimpulkan bahwa model semivariogram yang cocok digunakan adalah model eksponensial. Penaksiran dilakukan pada 24 titik lokasi yang tidak tersampel"
Depok: Universitas Indonesia, 2008
S27699
UI - Skripsi Open  Universitas Indonesia Library
cover
Nuri Rahmawati
"Model regresi ordinal dua level merupakan model yang digunakan untuk menganalisis data respon ordinal tercluster dan longitudinal. Dalam hal ini variabel respon ordinal yang diketahui, dibentuk dari suatu variabel laten kontinu yang tak diketahui nilainya. Nilai batas kategorik (threshold) pada variabel laten perlu diestimasi bersama-sama dengan koefisien regresi ordinal dua level. Untuk mengestimasi parameter-parameter dan threshold pada model regresi ordinal dua level, digunakan metode estimasi maximum marginal likelihood (MMLE) melalui pendekatan numerik dengan metode Fisher scoring. Pada setiap iterasi metode Fisher Scoring, digunakan Gauss-Hermite Quadrature untuk menghitung secara numerik persamaan marginal likelihood. Untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal tercluster, digunakan data TVSFP di mana siswa bersarang dalam kelas. Sedangkan untuk mengilustrasikan penerapan model regresi ordinal dua level untuk data ordinal longitudinal, akan digunakan data psikiatrik di mana pasien diklasifikasikan pada beberapa tingkat keparahan penyakit terhadap beberapa titik waktu (time points). Struktur data dua level yang digunakan untuk data longitudinal adalah perulangan observasi bersarang dalam individu (pasien)."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27701
UI - Skripsi Open  Universitas Indonesia Library
cover
Ias Sri Wahyuni
"Hotspot adalah daerah yang memiliki intensitas yang paling tinggi pada suatu lokasi tertentu. Salah satu metode yang digunakan dalam mendeteksi hotspot adalah Upper Level Set (ULS) scan statistics. ULS scan statistics adalah suatu metode yang digunakan untuk mendeteksi dan mengevaluasi kelompok daerah yang memiliki intensitas paling tinggi dari suatu kejadian yang diperhatikan. Dalam tulisan ini, kejadian diasumsikan berdistribusi Gamma. Pada ULS scan statistics, calon - calon hotspot di ditentukan oleh suatu rate atau level g. Daerah - daerah yang memiliki rate lebih besar dari g membentuk suatu scanning window yang merupakan kumpulan daerah calon hotspot. Pembentukan hotspot pada metode ini dapat dinyatakan dengan ULS Scan Tree. Tiap node pada tree merupakan anggota scanning window. Statistik likelihood yang sesuai dan metode Monte Carlo digunakan untuk menentukan signifikansi scanning window sebagai hotspot. Dalam skripsi ini, ULS scan statistics dengan model respon Gamma digunakan untuk mendeteksi daerah dengan curah hujan tertinggi di wilayah Daerah Aliran Sungai (DAS) Citarum, Bandung, Jawa Barat."
Depok: Universitas Indonesia, 2008
S27696
UI - Skripsi Open  Universitas Indonesia Library
cover
Erma Harviani
"Dalam penerapan analisis regresi seringkali terdapat efek dependensi spasial (lokasi) yaitu nilai observasi variabel dependen pada suatu lokasi bergantung pada nilai observasi di lokasi lain. Karateristik ini dinamakan spasial lag. Bentuk dependensi lain adalah spasial error yaitu error pada suatu lokasi dipengaruhi oleh error pada lokasi sekitarnya. Model regresi yang melibatkan efek dependensi spasial disebut model spasial dependen. Dalam kenyataannya tidak tertutup kemungkinan spasial dependen pada data cross section memiliki kedua kararateristik dependensi spasial. Tugas akhir ini membahas tentang prosedur mengestimasi parameter model dengan kedua jenis spasial dependen, yaitu spasial lag sekaligus spasial error dengan metode Generalized Spatial Two Stage Least Squares (GS2SLS). Metode ini menggunakan Two Stage Least Squares, Generalized Moment, dan transformasi Cochrane-Orcutt. Taksiran yang dihasilkan bersifat konsisten. Kata Kunci: Spasial Lag, Spasial Error, Two Stage Least Squares, Generalized Moment, Transformasi Cochrane-Orcutt."
Depok: Universitas Indonesia, 2008
S27774
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Reza Satrio Aji
"ABSTRACT
Setiap perusahaan asuransi tentu harus dapat memenuhi kewajibannya sebagai penanggung apabila terdapat klaim yang diajukan oleh pemegang polis atau tertanggung di masa yang akan datang. Oleh karena, itu penentuan premi menjadi hal yang sangat penting bagi perusahaan asuransi. Premi yang ditentukan oleh perusahaan asuransi mengandung net-premi yang merupakan estimasi besar klaim yang akan dilakukan pada periode pertanggungan. Supaya net-premi dapat ditentukan dengan baik perusahaan asuransi dapat menggunakan observasi-observasi klaim yang telah dilakukan oleh pemegang polis atau suatu kelas risiko dengan mempertimbangkan observasi-observasi klaim dari pemegang polis atau kelas risiko lain yang masih memiliki kesamaan risiko. Salah satu model yang dapat digunakan dalam perhitungan net-premi adalah model kredibilitas BA¼hlmann-Straub. Semakin banyak informasi mengenai klaim yang dilakukan oleh pemegang polis maka estimasi net-premi yang dihasilkan juga semakin baik, karena objek observasi yang lebih besar akan memberikan keakuratan yang lebih tinggi. Oleh karena itu jika dimungkinkan perusahaan asuransi dapat saling bertukar informasi baik secara langsung ataupun melalui asosiasi perusahaan asuransi. Akan tetapi model kredibilitas BA¼hlmann-Straub hanya mempertimbangkan informasi yang dimiliki oleh perusahaan asuransi itu sendiri, sehingga pada penelitian ini dikembangkan model kredibilitas BA¼hlmann-Straub multidimensi sebagai generalisasi dari model kredibilitas BA¼hlmann-Straub, supaya perhitungan net-premi dapat dilakukan dengan menggunakan observasi dari sejumlah perusahaan asuransi.

ABSTRACT
Every insurance company must certainly be able to fulfill its obligations as a guarantor if there are claims submitted by policyholders or insured in the future. Therefore, premium determination is very important for insurance companies. The premium determined by the insurance company contains a net-premium which is an estimate of claims that will be made during the insurance period. So that the net-premium can be determined properly, the insurance company can use the observations of claims that have been made by policyholders or a risk class by considering claims observations from other policyholders or other risk classes that still have similar risks. One of model that can be used in net-premium calculations is the BA¼hlmann-Straub credibility model. The more information about claims made by policyholders, the net-premium estimation produced is also getting better, because larger observation objects will provide higher accuracy. Therefore, if possible, insurance companies can exchange information either directly or through the association of insurance company. However, the BA¼hlmann-Straub credibility model only considers the information held by the insurance company itself, so in this thesis multidimensional BA¼hlmann-Straub credibility model is developed as a generalization of the BA¼hlmann-Straub credibility model, so that net-premium calculations can be done using observations from p source of information or insurance company."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harits Lazuardi
"ABSTRACT
Model kredibilitas Buhlmann umumnya digunakan untuk memprediksi besar tarif premi untuk setiap pemegang polis pada periode ke-(n+1) berdasarkan riwayat klaim sebanyak periode atau model one period. Pada skripsi ini dilakukan generalisasi terhadap model kredibilitas Buhlmann one period yang disebut sebagai model kredibilitas Buhlmann multiple period. Model multiple period memungkinkan insurer memprediksi besarnya tarif net premium tidak hanya satu periode ke depan tetapi juga beberapa periode ke depan berdasarkan riwayat klaim sebanyak periode. Model yang dibangun memberikan bobot kepada future claim dan anticipating premium. Untuk meminimalkan selisih besarnya premi multiple period terhadap future claim maupun anticipating premium digunakan masalah pemrograman kuadratik. Masalah pemrograman kuadratik diselesaikan dengan menggunakan kondisi Karush-Kuhn-Tucker. Dengan mengaplikasikan konsep model multiple period terhadap data real terlihat bahwa model kredibilitas Buhlmann multiple period memberikan besar tarif premi yang lebih adil untuk setiap pemegang polis dibandingkan menggunakan model kredibilitas one period. Diharapkan dengan menggunakan model multiple period, insurer dapat melakukan perencanaan jangka panjang lebih baik serta meningkatkan keefektifitasan kinerja.

ABSTRACT
Buhlmann credibility model generally used to predict premium tariff for each policyholder at  period based on period history claim or also called one period model. In this thesis, Buhlmann credibility model is generalized or also called multiple period model. Multiple period model allows insurer to predict amount of premium not only one period ahead but also few period ahead based on period history claim. The model is considering two important component, which are future claim and anticipating premium and gives weight for each component. To minimize the difference between premium multiple period and future claim also between premium multiple period and anticipating premium, quadratik programming problem is used on this thesis. Quadratic programming problem is solved by Karush-Kuhn-Tucker conditions. By applying the concept of multiple period models to real data, it can be seen that the Buhlmann multiple period credibility model gives premiums more fair for each policyholder than using the one-period credibility model. By using this model, hopefully insurer enable to conduct long-term financial planning and increase effectiveness of work."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhariyansyah
"ABSTRACT
Menurut Pasal 1 Undang-Undang nomor 40 tahun 2014 tentang Perasuransian, reasuransi adalah jasa pertanggungan ulang terhadap risiko yang dihadapi oleh perusahaan asuransi, perusahaan penjamin, atau perusahaan reasuransi lainnya. Ada beberapa macam bentuk reasuransi, salah satunya reasuransi stop-loss. Dalam reasuransi stop-loss, perusahaan asuransi akan menentukan batas kemampuannya dalam menanggung risiko dan sisa dari risiko yang tidak dapat ditanggung akan dialihkan kepada perusahaan reasuransi. Batas kemampuan ini disebut retensi. Oleh karena itu retensi yang optimal diperlukan oleh perusahaan asuransi penting untuk menghindari terjadinya kerugian yang lebih besar. Salah satu cara yang dapat digunakan adalah dengan menggunakan optimisasi ukuran risiko VaR (Value-at-Risk). Akan tetapi, optimisasi ini tidak dapat dilakukan jika diketahui terdapat informasi yang tidak lengkap untuk memperkirakan distribusi dari total loss yang diterima oleh perusahaan asuransi, misalnya hanya terdapat 2 momen pertama dan support yang terdapat pada interval [0,b] dimana b dapat bernilai +. Oleh karena itu, dilakukan suatu pendekatan yang memanfaatkan informasi tidak lengkap ini, yaitu pendekatan distribution-free. Dengan menggunakan pendekatan ini, dapat dilihat hasil bahwa retensi optimal yang diperoleh bergantung pada 2 momen pertama dan kebijakan safety loading yang ditentukan oleh perusahaan reasuransi.

ABSTRACT
According to Article 1 of Law No. 40 of 2014 on Insurance, reinsurance is a service of reinsurance of decisions made by insurance companies, guarantee companies or other reinsurance companies. There are several types of reinsurance, one of them is stop-loss reinsurance. In stop-loss reinsurance, reinsurance company will determine the bound of its ability to guarantee the risk and the remainder of the risk that cannot be guaranteed will be transferred to the reinsurance company. The bound of this ability is called retention. Therefore, optimal retention is needed for the insurance company to prevent bigger loss. One of the way that can be used is optimization of VaR (Value-at-Risk) risk measure. But, this optimization cannot be done if incomplete information is known to estimate the distribution of total loss that accepted by the insurance company, for the example there are only 2 first moments and support in interval [0,b] where b can have value +. Therefore, an approximation that utilizes this incomplete information can be used, this called distribution-free approximation. With this approximation, can be seen the result that the obtained optimal retention is depend on 2 first moments and safety loading obligation that determined by the reinsurance company."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Febriyanto
"ABSTRACT
Model Generalized Space Time Autoregressive adalah suatu model spatio temporal yang merupakan pengembangan model Space Time Autoregressive (STAR). Model STAR adalah model spatio temporal dengan asumsi parameter-parameter sama untuk setiap lokasi. Model GSTAR dibentuk sebagai pengembangan dari model STAR yang memungkinan untuk mengestimasi parameter yang berbeda untuk setiap lokasinya. Borovkova, Lopuhaa dan Ruchjana (2002) mengembangkan model Generelized Space Time Autoregressive (GSTAR) dimana paramater-parameter pada model, berbeda untuk setiap lokasi. Metode kuadrat terkecil (least square method) digunakan untuk mengestimasi parameter pada model GSTAR. Metode kuadrat terkecil merupakan metode pendugaan parameter yang meminimumkan jumlah kuadrat error. Penggunaan model GSTAR pada data penyakit Hepatitis A di 5 kotamadya DKI Jakarta pada tahun 2011-2017 menghasilkan model GSTAR(4,1) sebagai model yang dipilih.

ABSTRACT
Generalized Space Time Autoregressive(GSTAR) model is a spatio temporal model which is the development of the Space Time Autoregressive (STAR) model. The STAR model is a spatio temporal model assuming the same parameters for each location. The GSTAR model was formed as a development of the STAR model which makes it possible to estimate different parameters for each location. Borovkova, Lopuhaa and Ruchjana (2002) developed the Generelized Space Time Autoregressive (GSTAR) model where parameters in the model differ for each location. The least square method is used to estimate the parameters in the GSTAR model. The least squares method is a parameter estimation method that minimizes the number of squared errors. The use of the GSTAR model on Hepatitis A data in 5 DKI Jakarta municipalities in 2011-2017 produced the GSTAR (4.1) model as the chosen model."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Rizki Saputro
"Pada asuransi, tingkat risiko menjadi hal utama dalam menentukan ketentuan-ketentuan yang diterapkan oleh perusahaan asuransi seperti ketentuan besarnya premi yang harus dibayarkan pemegang asuransi. Pada asuransi kendaraan bermotor, salah satu cara untuk melihat tingkat risiko pemegang asuransi adalah dengan memprediksi apakah pemegang asuransi tersebut akan mengajukan klaim asuransi kendaraannya selama satu tahun ke depan. Banyaknya pemegang asuransi kendaraan menghasilkan data yang besar. Metode machine learning mampu mengolah data yang besar dan menghasilkan akurasi yang cukup tinggi. Sudah banyak metode-metode machine learning yang digunakan untuk prediksi klaim asuransi salah satunya neural network yang terinspirasi dari pengolahan informasi pada jaringan syaraf biologis. Terdapat metode deep neural network yang merupakan pengembangan neural network dengan struktur yang lebih kompleks dan menghasilkan akurasi yang lebih tinggi. Penelitian ini menerapkan metode deep neural network untuk memprediksi pengajuan klaim asuransi kendaraan bermotor dan menganalisa akurasi hasil simulasi. Pada penelitian ini juga dibandingan hasil akurasi antara metode deep neural network dengan metode neural network tandar. Hasil simulasi pada penelitian ini menunjukkan bahwa akurasi metode deep neural network lebih tinggi dibandingkan dengan metode neural network standar.

In insurance, the level of risk is the main thing in determining the conditions applied by insurance companies. In automobile insurance, one way to see the risk level of insurance holders is to predict whether the insurance holder will submit an insurance claim for the vehicle for the next year. The number of automobile insurance holders produces large data. Machine learning method can process large data and produce high accuracy to predict claims. There have been many machine learning methods used for insurance claim prediction, for example is neural network. Neural network in machine learning inspired by information processing on biological neural network. Deep neural network which is the development of neural network with structures that are more complex and produce higher accuracy. This research uses deep neural network to predict claim automobile insurance and analyze the accuracy of the simulation result. We also compare the accuration of deep neural network with standart neural network. Our simulation show that the accuration of deep neural network is better than standart neural network."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2   >>