Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 32 dokumen yang sesuai dengan query
cover
Ahmad Anis Fuad
Depok: Fakultas Teknik Universitas Indonesia, 1999
S49193
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bachtiar Firdaus
Abstrak :
ABSTRAK
Karbon aktif merupakan bahan yang dikenal sebagai bahan adsorben untuk digunakan pada sektor industri pangan maupun non pangan. Selain itu, penggunaan karbon alctif sangat erat hubungannya dengan usaha perlindungan lingkungan. Semakin ketat pelaksanaan peraturan tentang perlindungan ini maka pemakaian karbon aktifsemakin meningkat.

DK1 Jakarta telah mengeluarkan ketetapan baku mutu air minum. Ketetapan tersebut antara lain berisi tentang kandungan logam kadmium maksimum yang diperbolehkan dalam air minum sebesar 0.01 mg/L. Sedangkan air yang tersedia rnemiliki kandungan kadmium sebesar 363.6 mg/L. Menyadari hal tersebut maka dimulailah penelitian mengurangi kadar kadmium dalam air dengan karbon aktif granular ukuran 0.8-1.0 mm melalui sistem kontinu.

Karbon aktif yang digunakan dipanaskan terlebih dahulu pada suhu 100°C selama 24 jam, perlalcuan ini dimaksud untuk memperluas permukaan karbon aktif. Dengan menggunakan Autosorb BET, karakterisasi luas permukaan karbon aktif diukur pada saat sebelum dan sesudah aktivasi, hasilnya mengalami kenaikan yaitu dari 555.5 m2/gr menjadi 597.6 m2/gr.

Pada proses adsorpsi dengan variasi waktu kontak diperoleh kondisi jenuh pada waktu kontak 10 menit disaatjam ke-14 dan pada waktu kontak 20 menit pada jam ke-18. Dengan permodelan Freundlich diperoleh konstanta kesetimbangan adsorpsi (Kr) untuk waktu kontak 10 menit sebesar 4.62l66, sedangkan untuk waktu kontak 20 menit diperoleh konstanta kesetimbangan adsorpsi (Kf) sebesar 6.53l45.

Penurunan konsentrasi air dari 363.6 mg/L menjadi air dengan kandungan kadmium 0.01 mg/L (sesuai ketentuan baku mutu) maka diperlukan karbon aktif sebesar 630.49 gram untuk waktu kontak 10 menit dengan laju alir sebesar 49.06 cm3/menit dan sebesar 548.55 gram untuk waklu kontak 20 menit dengan laju alir sebesar 24.50 cms/menit.
2001
S49146
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zuhal Fachri
Depok: Fakultas Teknik Universitas Indonesia, 2001
S49141
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aris Priyanto
Abstrak :
Teknologi adsorpsi dengan memanfaatkan karbon aktif merupakan teknologi pengendalian VOC yang cukup banyak digunakan karena murah dan sederhana serta mempunyai efisiensi yang cukup tinggi untuk me-recover VOC. Uji adsorpsi aseton dan kloroform terhadap karbon aktif kering (kadar air ± 0%) dan basah (kadar air ± 10%) pada temperatur adsorpsi 27°C menghasilkan kurva terobosan yang mengikuti S-shape dari emisi 10°, 20° dan 30°C, sedangkan kurva terobosan dan kapasitas adsorpsi dibawah ini hanya untuk emisi 30°C terhadap aseton dan kloroform. Dari kurva terobosan dapat dilihat karbon aktif kering mampu mengadsorp kadar uap aseton dari 29 mg/L sampai 409,81 mg/L, uap kloroform dari 29 mg/L sampai 900,83 mg/L. Untuk karbon aktif basah dapat mengadsorp kadar uap aseton dari 17 mg/L sampai 410,33 mg/L, dan uap kloroform dari 17 mg/L sampai 1002,95 mg/L. Dari kurva terobosan dapat ditentukan kemampnan adsorpsi karbon aktif atau kapasitas adsorpsi karbon aktif (q*) untuk mengadsorp adsorbat. Karbon aktif kering mampu mengadsorp uap aseton sebesar 8184,53 μmol/gr karbon aktif kering; uap kloroform sebesar 7700,21 μmol/gr karbon aktif kering. Untuk karbon aktif basah dapat mengadsorp uap aseton sebesar 5420,06 μmol/gr karbon aktif basah; uap kloroform sebesar 5764,20 μmol/gr karbon aktifbasah. Penentuan Iaju adsorpsi dilakukan pada daerah linier dari kedua jenis adsorbat. Laju adsorpsi aseton pada temperatur adsorpsi 27°C untuk karbon aktif keting mengikuti persamaan r = 0,1290 (q*- q) untuk daerah linier 0-57 menit, dengan karbon aktif basah, r = 0,1391(q*- q) untuk daerah linier 0-50 menit; klorofom, karbon aktif kering, r = 0,119 (q* - q) untuk daerah linier 0-65 menit, karbon aktif basah, r = 0,1293 (q* - q) untuk daerah linier 0-60 menit. Kapasitas adsorpsi adsorbat pada karbon aktif dipengaruhi oleh temperatur adsorpsi. Hasil perhitungan panas adsorpsi aseton menggunakan karbon aktif kering menghasilkan harga panas adsorpsi (Q) sebesar - 29 kJ/mol dan dengan karbon aktif basah - 14 kJ/mol sedangkan pada adsorpisi kloroform sebesar -10 kJ/mol pada karbon aktif kering dan -15 kJ/mol pada karbon aktif basah. Ini menunjukkan adsorpsi yang terjadi merupakan adsorpsi fisika.
Depok: Fakultas Teknik Universitas Indonesia, 2001
S49142
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nyala Dwis Merthania
Abstrak :
ABSTRAK
Penggilingan clinker pada industri semen tidak selalu bekerja optimum karena mesin penggilingan akhir yang dilengkapi ball mill selalu di ?on-off? untuk menghindari suhu tinggi pada mesin penggiling. Akibat utamanya adalah pemborosan bahan bakar listrik dan waktu produksi.

Mengingat bahwa pelaksanaan tidak dapat dilakukan di lapangan, maka penelitian dilakukan secara skala laboraturium. Dengan ditambahkannya fly ash sebagai aditif pada penggilingan clinker (1-10% per kilogram clinker), maka proses penggilingan semen diharapkan akan semakin lancar karena sifat aditif tersebut akan memecah ikatan elektrostatif antara ball mill dengan semen sehingga semen yang keluar dari proses penggilingan akhir menjadi lebih lancar yang berarti pemborosan listrik dan waktu produksi dapat diatasi.

Penambahan fly ash I-5% pada penggilingan akhir semen berdasarkan pada keoptimuman fly ash bekerja tampa merubah sifat semen Portland tipe 1(blaine 2800-330Ocm2/g, distribusi partikel dengan mesh<325 sekitar 70-75%, komposisi kimia terpenuhi). Hasil penelitian diperoleh bahwa dengan penambahan I-5% fly ash /kg clinker, komposisi kimia yang disyaratkan untuk semen Portland tipe I tetap terpenuhi. Kenaikan blaine bertambah, yaitu sekjtar 5-15% dari standart yang dibuat saat penelitian yaitu 2979 cm2/g dan kenakan distribusi partikel yang dilihat dari naiknya persentase mesh semen diatas 325 sekitar 2-11% dari standart penelitian dengan lamanya penggilingan 60 menit untuk tiap sampel.

Sehingga penghematan penggunaan energi listrik pada proses penggilingan akhir semen dicapai sampai dengan 20%.
2001
S49128
UI - Skripsi Membership  Universitas Indonesia Library
cover
Asep Sumantri
Abstrak :
Arang tempurung kelapa (coconut shelI charcoal) merupakan salah satu sumber dari karbon aktif yang dewasa ini sering digunakan untuk berbagai keperluan, diantaranya sebagai adsorben pada sektor industri pangan, maupun non pangan. Dalam penelitian ini karbon dari tempurung kelapa berukuran antara 0,063 mm dan 0,125 mm, diaktifkan dengan aktivator MgCl2 dan NaCl dengan variasi waktu 1, 2, 3, 4, 5, 6, 9, 12, 24 dan 48 jam, dan diperoleh waktu perendaman terbaik adalah 9 jam. Larutan aktivator MgCl2 adalah aktivator terbaik sebagai adsorben untuk meningkatkan kualitas minyak kelapa (crude coconur oil). Dari basil karakterisasi karbon aktif dengan metode BET - Autosorb, pada luas permukaan karbon aktif terjadi peningkatan Sant sebelum aktivasi dan sesudah aktivasi, yaitu dari semula 249.1 mzfgr, untuk karbon aktif MgCl2 menjadi 325.9 ml/gr, kemudian menurun setelah proses adsorpsi, yaitu menjadi sebesar 302.7 m2/gr. Untuk karbon aktif NaCl setelah aktivasi adalah 271.5 mllgr, kemudian menurun setelah proses adsorpsi, yaitu sebesar 253.1 m2/gr. Badan Standardisasi Nasional (SNI No. 01 - 3555) dan Standar Industri Indonesia (SII) telah mengeluarkan ketetapan tentang kandungan maksimum yang diperbolehkan pada minyak kelapa untuk Bilangan Peroksida adalah 5,00 (mL Na3S;O3 0,001 N/g sampel), Asam Lemak Bebas: 5,00 (mL KOH/g sampel), Derajat Asam : 9,00 (mL KOH I N/g sampel). Bilangan Asam: 5,00 (mL KOH/g Sampel). Dari hasil pcnelitian ini, dengan hasil yang Lerbaik adalah dari adsorpsi kurbon aktif MgCl2, yaitu dengan perincian 1 Bilangan Peroksida 0,83 (mL Na2S2O3 0,001 N/g sampel), Asam Lemak Bebas : 0,158 (mL KOH/g sampel), Bilangan Asam 3 0,045 (mL KOH/g sampel), Derajat Asam 1 0,03 (mL KOH 1 N/g sampel). Sedangkan untuk minyak pembanding, minyak goreng Barco (berasal dari buah kelapa) masih Iebih baik dibandingkan dengan perolehan hasil yang diteliti. Hasil penelitian tersebut menunjukkan bahwa penggunaan aktivator terbaik MgCl2 pada karbon aktif mampu meningkatkan kualitas minyak kelapa, dan masih jauh lebih baik dari persyaratan kondisi standar yang telah ditetapkan.
Depok: Fakultas Teknik Universitas Indonesia, 2001
S49140
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Prasetio Wibowo
Abstrak :
Kandungan sulfur dalam minyak solar dianggap sebagai penyumbang terbesar dalam penyebab polusi udara dan terjadinya hujan asam yang merusak bangunan- bangunan dikota-kota besar. Karena aspek lingkungan hidup itulah maka dipandang perlu untuk mengurangi kandungan sulfur dalam minyak solar, Salah satu cara untuk mengurangi kadar sulfur dalam minyak solar adalah dengan proses desulfurisasi dengan cara fotokimia dimana minyak solar disinari dengan sinar UV-merkuri yang berenergi tinggi sehingga senyawa organosulfur didalam miyak solar akan terdekomposisi kemudian senyawa organosulfur yang telah terdekomposisi tersebut akan diekstrak oleh larutan pengekstrak Pada percobaan ini akan digunakan larutan pengekstrak NaOH dan air murni (destilled water). Keuntungan menggunakan cara fotokimia adalah tidak diperlukannya katalis, pengoperasian dan pengontrolannya mudah serta berlangsung pada kondisi ruang dan tekanan 1 atmosfir. Penelitian ini menggunakan larutan umpan yakni minyak solar yang telah dikotori dengan n-dodecyl mercaptan dan kemudian disinari oleh lampu UV-merkuri 60 watt. Pada penelitian ini, kaca kuarsa dipakai sebagai tempat iradiasi pada reaktor fotokimia ,dimana dengan pemakaian kaca kuarsa diharapkan absorpsi atau hamburan yang disebabkan oleh antaraksi materi penyusun media dan sinar UV akan dikurangi. Dari penelitian yang dilakukan didapatkan hasil bahwa pada proses fotokimia menggunakan kaca kuarsa memperlihatkan penurunan total sulfur sampai 72.09% setelah 9 jam mengalami proses fotokimia. Hasil ini lebih besar 7.75% dibandingkan kaca pyrex. Pada proses fotokimia selama 9 jam yang diikuti proses ekstraksi cair-cair menggunakan rasio minyak solar dan larutan NaOH 1:7, memperlihatkan penurunan total sulfur sampai 76.74%. Pada proses ekstraksi cair-cair menggunakan air murni menunjukkan penurunan total sulfur yang lebih besar dibanding NaOH yakni 75.19% setelah mengalami proses fotokimia selama 9 jam. Penambahan asam peroksi asetat memperlihatkan penurunan total sulfur yang lebih besar 3.1% dibandingkan tanpa penambahan asam peroksi asetat setelah 9 jam proses fotokimia dan ekstraksi cair-cair.
Depok: Fakultas Teknik Universitas Indonesia, 2002
S49340
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cipto Firmansyah
Abstrak :
Banyak upaya yang telah dilakukan untuk mengatasi masalah emisi gas huang kendaraan bermotor khususnya mesin diesel. Salah satunya adalah dengan menggunakan katalitik konverter, dimana katalis yang biasa digunakan adalah logam mulia yang mahal harganya. Saat ini dikembangkan inti la!talis lain yang !ebih prospektif yaitu Cu dengan support alumina. Inti katalis ini rnempunyai suatu kelemahan yaitu mudah teracuni oleh sulfur yang terkandung dalam solar sehingga mudab terdeaktivasi. Untuk itu perlu dikembangkan suatu metode yang mampu m berikan pertlndungan kepada inti katatis. Salah satunya adalah dengan menambahkan spinel oksida MnFez04 pada inti katalis. Spinel tersebut memiliki aktivitas yang tinggi terhadap sulfur, sehingga senyawa sulfur akan diadsorbsi lebih kuat oleh spinel dibandingkan adsorbsi oleh inti aktif Cu. Pada penelitian ini dilakukan preparnsi katalis Cu-MnFe,OJAJ,O, dengan metode impregnasl yang selanjutnya dikarakterisasi terhadap luas permukaan dan ikatan kirnia antara komponen penyusun katalis. Katalis diuji keaktivannya dalam mengadsorpsi SOz dan aktivitasnya mengoksidasi jelaga datam aliran udara, Aktivitas diukur terhadap terbentuknya CO, yang dianalisis dengan Kromatografi Gas (GC). Hasil uji adsorpsi SOz menunjukan bahwa penambaban spinel MnFe,.04 terhadap katalis Cu!Al,O, dapat meningkatkan laju adsorbsi awal sebesar 2,6 kali.
Depok: Fakultas Teknik Universitas Indonesia, 2002
S49298
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bahrul Budiman
Abstrak :
Teknologi Direct Merhanol Fuel Cell (DMFC) merupakan teknologi fuel cell yang mengalami kemajuan pesat saat ini. Pengujian kinerja sistem DMFC terhadap berbagai kondisi operasi perlu dilakukan untuk mengetahui pengaruhnya guna mendapatkan kondisi operasi yang optimal. Pengujian kinerja sistem DMFC dilakukan dengan cara uji single cell dengan menggunakan MEA komersil dari fuelcellstore.com. Dalam skripsi ini akan dilakukan percobaan untuk mengetahui pengaruh perubahan kondisi operasi terhadap kinerja DMFC, yaitu Suhu, konsentrasi metanol, Iaju alir metanol dan laju alir oksigen. Selain itu juga dibandingkan kinerja sistem DMFC hasil penelitian ini dengan sistem DMFC hasil penelitian yang sebelumnya. Dari hasil pengujian yang dilakukan terhadap kinerja sistem DMFC maka didapatkan bahwa semakin tinggi suhu, kinerja DMFC akan semakin tinggi. Tetapi hal ini dibatasi oleh adanya tahanan proton dari membran. Semakin tinggi suhu, tahanan proton membran akan semakin tinggi. Suhu optimal adalah 70°C. Semakin tinggi konsentrasi metanol, kinerja DMFC semakin tinggi. Tetapi hal ini dibatasi oleh adanya metanol crossover. Semakin tinggi suhu konsentrasi, merhanol crossover semakin tinggi juga konsentrasi metanol optimal adalah 1 M dan 2 M. Semakin tinggi laju alir metanol dan Iaju alir oksigen, kinerja DMFC akan semakin turun. Open circuit votrage yang dapat dihasilkan pada percobaan ini sebesar 340 mV serta power density yang dihasilkan sekitar 2 mW/cm2.
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49521
UI - Skripsi Membership  Universitas Indonesia Library
cover
Najoan, Nestorius Sowor
Abstrak :
Industri pengolahan gas alam di Indonesia merupakan industri yang layak untuk investasi. Hal ini dikarenakan cadangan gas alam yang cukup banyak di Indonesia, pemanfaatannya yang kurang maksimal, kenaikan subsidi BBM, serta pasar yang menjanjikan. Pabrik pengolahan gas alam yang akan dibangun ini mempunyai kapasitas sebesar 153,257.238 MMSCF/tahun dan diharapkan akan beroperasi selama 19 tahun. Angka tersebut didapatkan berdasarkan analisa pasar Indonesia. Pabrik ini akan dibangun di Kecamatan Batui, Kabupaten Banggai, Sulawesi Tengah. Proses yang ada dalam pabrik ini menggunakan mode operasi kontinyu. Gas alam akan diproses menggunakan dua proses utama yaitu proses sweetening dan fraksionasi. Proses sweetening merupakan proses absorbsi menggunakan pelarut DEA yang bertujuan untuk membersihkan gas alam umpan. Proses fraksionasi merupakan proses utama yang akan memisahkan gas alam menjadi produk gas kota, LPG serta kondensat. Produk gas kota direncanakan akan didistribusikan menggunakan dua alternatif transportasi yaitu dengan perpipaan atau CNG. Unjuk kerja proses yang baik ditunjukkan dengan effisiensi energi sebesar 82.61% (proses sweetening) dan 98.57% (proses fraksionasi). Berdasarkan perhitungan ekonomi, pabrik pengolahan gas alam yang akan dibangun ini membutuhkan investasi sekitar US$ 160 juta dan biaya manufaktur sekitar US$ 57.7 juta. Dengan analisa ekonomi, didapatkan nilai NPV untuk proyek ini sekitar US$ 94 juta, IRR sebesar 25%, dan PBP sekitar 6 tahun. Perubahan paling sensitif terhadap kelayakan pabrik ini adalah kapasitas produksi pabrik, dimana produksinya tidak boleh kurang dari 76136.884 MMSCF/tahun atau 49.68% dari kapasitas produksi dasar pabrik. Analisa resiko dengan metode Monte Carlo berdasarkan parameter IRR lebih besar dari tingkat diskonto (11%) menyatakan peluang kelayakan pabrik untuk distribusi gas kota dengan jaringan pipa sebesar 82.15% sedangkan dengan CNG sebesar 79.78%. Berdasarkan analisa ekonomi yang telah dilakukan maka pabrik ini telah memenuhi tingkat kelayakan secara ekonomi dan layak untuk dibangun.
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49533
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4   >>