Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 82025 dokumen yang sesuai dengan query
cover
Catur Adi Nugroho
"Laporan Tugas Akhir ini berisi mengenai penelitian yang dilakukan oleh penulis dalam membandingkan kinerja beberapa algoritma, yang tergolong ke dalam agglomerative hierarchical, dalam hal melakukan clustering dokumen untuk mendapatkan solusi hierarchical cluster. Algoritma yang diperbandingkan adalah algoritma single link, complete link, dan average. Proses perbandingan dilakukan berdasarkan kualitas cluster yang dihasilkan pada sejumlah dataset. Hasil penelitian menunjukkan bahwa algoritma average merupakan algoritma yang terbaik dalam menghasilkan solusi hierarchical cluster, diikuti oleh algoritma single link, dan algoritma complete link.
Penelitian ini juga melakukan penerapan teknik dalam feature selection untuk melihat seberapa besar efisiensi yang bisa diperoleh tanpa harus mengurangi kualitas solusi cluster yang dihasilkan. Teknik feature selection yang dipergunakan meliputi pembatasan nilai Document Frequency dan Information Gain. Efisiensi yang dilakukan oleh kedua teknik ini adalah melakukan pemilihan kata-kata yang penting saja yang diikutsertakan dalam proses clustering. Penelitian ini mencoba melihat seberapa besar efisiensi yang dapat diperoleh masing-masing teknik dan kemudian membandingkannya satu sama lain. Hasil penelitian menunjukkan bahwa kedua teknik baik pembatasan nilai Document Frequency dan Information Gain mampu melakukan efisiensi pada titik-titik reduksi yang sudah ditetapkan yaitu sebesar 10%-90% dari jumlah kata unik yang ada tanpa kualitas yang berkurang. Selain itu, hasil penelitian menunjukkan bahwa kedua teknik ini sama efektifnya dalam mereduksi dimensi dari dataset yang dipergunakan."
Depok: Universitas Indonesia, 2007
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maria Angelica Christabel
"Poverty is still a serious challenge for all countries in the world, including Indonesia. The Central Statistics Agency (BPS) noted that 25.9 million people were still living in poverty as of March 2023. The challenge of inefficient and poorly targeted budget distribution in some programs hampers poverty alleviation efforts. In line with that, the objective of this study is to categorize provinces based on poverty indicators to provide an understanding of the characteristics and patterns of poverty in various Indonesian provinces. This research uses the Link-based Cluster Ensemble method, which combines various solutions from different clustering methods, namely K-medoids and Agglomerative Hierarchical Clustering to obtain more optimal results. The final result of ensemble clustering is obtained through a similarity matrix by applying the Connected-Triple-based Similarity (CTS) algorithm, which utilizes pairwise similarity relationships between all data points. The data for this study comes from BPS regarding Poverty Data in Indonesia in 2023, with the selection of variables that can reveal the characteristics of poverty in Indonesia, such as aspects of education, employment, expenditure, and household facilities. The results showed that the Link-based Cluster Ensemble method, which was formed through a three-member ensemble from the results of K-Medoids and Agglomerative Hierarchical Clustering, successfully outperformed the single clustering method based on cluster evaluation values using Silhouette, Davies-Bouldin, and Dunn Index. The results grouped the provinces into four clusters: Cluster 1 reveals poverty conditions with low education participation and sanitation facilities, Cluster 2 with low education and high expenditure, Cluster 3 with high unemployment, and Cluster 4 with low clean water facilities.

Kemiskinan masih menjadi tantangan serius bagi seluruh negara di dunia, termasuk Indonesia. Badan Pusat Statistik (BPS) mencatat sebanyak 25,9 juta masyarakat masih hidup dalam kemiskinan per Maret 2023. Tantangan dalam penyaluran anggaran yang tidak efisien dan tepat sasaran pada beberapa program menghambat upaya pengentasan kemiskinan. Sejalan dengan hal itu, tujuan dari penelitian ini adalah mengelompokkan provinsi berdasarkan indikator kemiskinan untuk memberikan pemahaman tentang karakteristik dan pola kemiskinan di berbagai provinsi Indonesia. Penelitian ini menggunakan metode Link-based Cluster Ensemble, yang menggabungkan berbagai solusi dari metode pengelompokan berbeda, yaitu K-medoids dan Agglomerative Hierarchical Clustering untuk mendapatkan hasil yang lebih optimal. Hasil akhir pengelompokan ensemble diperoleh melalui similarity matrix dengan menerapkan algoritma Connected-Triple-based Similarity (CTS), yang memanfaatkan hubungan kesamaan berpasangan antara seluruh titik data. Data penelitian ini berasal dari BPS mengenai Data Kemiskinan di Indonesia tahun 2023, dengan pemilihan variabel yang dapat mengungkapkan karakteristik kemiskinan di Indonesia, seperti aspek pendidikan, ketenagakerjaan, pengeluaran konsumsi, dan fasilitas rumah tangga. Hasil penelitian menunjukkan bahwa metode Link-based Cluster Ensemble, yang dibentuk melalui tiga anggota ensemble dari hasil pengelompokan K-Medoids dan Agglomerative Hierarchical Clustering, berhasil mengungguli metode pengelompokan tunggal berdasarkan nilai evaluasi cluster menggunakan Silhouette, Davies-Bouldin, dan Dunn Index. Hasil penelitian mengelompokkan provinsi ke dalam empat cluster: Cluster 1 mengungkapkan kondisi kemiskinan dengan aspek partisipasi pendidikan dan fasilitas sanitasi yang rendah, Cluster 2 dengan kondisi aspek pendidikan yang rendah dan pengeluaran konsumsi yang tinggi, Cluster 3 dengan kondisi pengangguran yang tinggi, dan Cluster 4 dengan kondisi fasilitas air bersih yang rendah."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eryawan Deise Ulul
"[ABSTRAK
Hierarchical clustering merupakan metode yang efektif dalam membentuk pohon
filogenetik dengan mengetahui matriks jarak antar barisan DNA. Salah satu cara
untuk membuat matriks jarak yaitu dengan cara menggunakan metode -mer.
Kelebihan dari metode -mer yaitu lebih efisien dalam segi waktu. Langkahlangkah
dalam membuat matriks jarak dengan metode -mer dimulai dengan
membentuk -mer sparse matrix dari masing barisan DNA. Selanjutnya,
membentuk -mer singular value vector. Pada tahap akhir yaitu menghitung jarak
antar vektor. Pada tesis ini akan dilakukan analisis terhadap barisan DNA MERSCoV
dengan mengimplementasi Hierarchical clustering menggunakan -mers
sparse matrix sehingga dapat diketahui leluhur dari masing-masing barisan DNA
MERS-CoV.

ABSTRACT
Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV., Hierarchical clustering is an effective method in creating phylogenetic by
knowing the distance matrix between DNA sequence. One of methods to make the
distance matrix use -mer method. -mer is more efficient than others. The steps
to make distance matrix using -mer method starts from creating -mer sparse
matrix. Then, creating -mer singular value vector. The last steps is counting
distance each vectors. This thesis will analyze the sequence of DNA MERS-CoV
by implementing Hierarchical clustering using k-mers sparse matrix so that will
be known the ancestor of each sequence of DNA MERS-CoV.]"
2015
T44260
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S38587
UI - Skripsi Membership  Universitas Indonesia Library
cover
Banjarnahor, Evander
"Berdasarkan data WHO pada pertengahan Juli 2021 lebih dari 185,2 juta orang di seluruh dunia terinfeksi virus corona atau Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Virus ini menyerang penapasan manusia yang dapat mengakibatkan infeksi paru-paru pada manusia dan bahkan dapat menyebabkan kematian. Tercatat bahwa lebih dari 4 juta orang di seluruh dunia meninggal akibat terinfeksi virus corona. Di Indonesia sendiri pada pertengahan Juli 2021 tercatat lebih dari 2,4 juta orang ternfeksi virus corona dan lebih dari 65,4 ribu orang meninggal akibat terinfeksi virus corona. Berdasarkan data tersebut, perlu dilakukan analisis kekerabatan virus SARS-CoV-2 untuk mengurangi penyebaran dan memberikan batasan sosial dari negara satu dengan negara lainnya. Identifikasi kekerabatan dari virus covid-19 dan penyebarannya dapat dilakukan dengan cara pembentukan pohon filogenetik dan clustering. Pada penelitian ini pohon filogenetik akan dibangun berdasarkan metode Hierarchical Clustering dengan menggunakan metode Multiple Encoding Vector dan K-Mer berdasarkan translasi DNA kodon menjadi asam amino. Jarak Euclidean akan digunakan untuk menentukan matriks jarak. Penelitian ini selanjutnya menggunakan metode K- Means Clustering untuk melihat penyebarannya, dimana nilai k ditentukan dari jumlah centroid yang dihasilkan dari metode Hierarchical Clustering. Penelitian ini mengambil sampel barisan DNA SARS-CoV-2 dari beberapa negara yang tertular. Dari hasil simulasi, nenek moyang SARS-CoV-2 berasal dari China. Hasil analisis juga menunjukkan bahwa leluhur covid-19 yang paling dekat dengan Indonesia berasal dari India, Australia dan Spanyol. Selain itu dari hasil simulasi dihasilkan bahwa barisan DNA SARS-CoV-2 terdiri dari 9 cluster dan cluster keenam adalah kelompok yang memiliki anggota paling banyak. Hasil analisis juga menunjukkan bahwa metode ini sangat opitimal dalam pengelompokan data dengan nilai 97.4%.

Based on WHO data in middle of July 2021, Coronavirus or Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is infecting more than 185.2 million people worldwide. The virus attacks human breathing, which can cause lung infections and can even cause death. More than 4 million people worldwide have died due to being infected with the coronavirus. In Indonesia alone, in mid-July 2021, there were more than 2.4 million people infected with the corona virus and more than 65.4 thousand people died from being infected with the corona virus. Based on those covid-19 survivor data, it is necessary to carry out a kinship analysis of the coronavirus to reduce its spreading. Identification of the kinship of the covid- 19 virus and its spread can be done by forming a phylogenetic tree and clustering. This study uses the Multiple Encoding Vector method and K-mer based on translation DNA codon to amino acid in analyzing sequences and Euclidean Distance to determine the distance matrix. This research will then use the Hierarchical Clustering method to determine the number of initial centroids and cluster, which will be used later by the K-Means Clustering method kinship in SARS-CoV-2 DNA sequence. This study took samples of DNA sequences of SARS-CoV-2 from several infected countries. From the simulation results, the ancestors of SARS-CoV-2 came from China. The results of the analysis also show that the closest ancestors of covid-19 to Indonesia came from India, Australia and Spain. In addition, the ancestors of SARS-CoV-2 came from China. The SARS- CoV-2 DNA sequence is also consisted of 9 clusters, and the sixth cluster is the group that has the most members. The results also show that this method is very optimal in a grouping of data with a value of 97.4%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Meita Pusparini
"Penelitian ini bertujuan untuk mengidentifikasi segmentasi RFM pada toko kosmetik online di Indonesia. Penelitian ini menggunakan analisis RFM (Recency, Frequency, dan Monetary) yang dilanjutkan dengan K-Means Clustering dengan menggunakan Hiearchical Clustering untuk mencari nilai k. Penelitian ini menggunakan data transaksi penjualan Makeupuccino sepanjang tahun 2017 untuk segmentasi RFM. Hasilnya menunjukkan bahwa jumlah segmentasi yang paling tepat untuk toko kosmetik online adalah 4, yang dibagi menjadi Platinum, Gold, Iron, dan Lead. Keempat segmentasi tersebut memiliki marketing objective dan program marketing yang berbeda.

This research aims to identify RFM segmentation on makeup online store in Indonesia. This research uses RFM (Recency, Frequency, and Monetary) analysis and then uses K-Means Clustering with Hierarchical Clustering as the way to finds k values. This study uses transaction on Makeupuccino (one of makeup online store in Indonesia) during 2017 to get RFM segmentation. The result shows that the best RFM segmentation for makeup online store in Indonesia is 4, that divided into Platinum, Gold, Iron, and Lead. Each of segmentation has different marketing objective and marketing program.
"
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yuridunis Saidah
Depok: Universitas Indonesia, 2010
S27783
UI - Skripsi Open  Universitas Indonesia Library
cover
Ramadhan Nugroho Dewanto
"Hierarchical time series adalah sejumlah data time series yang mengikuti struktur penggabungan hierarki, dimana data time series pada level lebih tinggi adalah hasil penggabungan dari level yang lebih rendah. Fokus utama dari penelitian ini adalah untuk mem-forecast data berjenis hierarchical time series ini. Forecasting dapat dilakukan dengan menggunakan model hierarchical forecasting. Model ini bekerja dengan memforecast semua time series yang ada pada hierarki, secara individual, masing-masing
dengan menggunakan model terbaiknya. Akan tetapi, hasil forecast yang didapat dengan menggunakan model ini masih tidak koheren, yaitu penjumlahan hasil forecast pada level yang lebih bawah tidak sama dengan hasil forecast di level lebih atasnya. Hasil forecast ini dapat diperbaiki dengan merekonsiliasi hasil forecast yang telah didapat agar hasilnya koheren. Metode rekonsiliasi umum yang biasa digunakan adalah metode bottom-up atau top-down. Walau demikian, penelitian ini menggunakan metode rekonsiliasi minimum trace untuk mendapatkan hasil forecast koheren. Metode rekonsiliasi ini bekerja dengan meminimumkan variansi residual, dengan syarat hasil forecast koheren yang didapat bersifat tidak bias. Metode hierarchical forecasting dengan rekonsiliasi minimum trace ini akan diimplementasikan untuk mem-forecast jumlah pengangguran di Australia dan di setiap provinsinya pada tahun 2020, dengan menggunakan data pengangguran tahun 1979 hingga 2019. Nantinya, hasil forecast yang didapat di berbagai jenjang pada hierarki akan koheren.

Hierarchical time series is a collection of time series that follows a hierarchical aggregation structure, where the time series collection at the higher level is a result of lower leveled time series aggregation. The focus of this research is to forecast this hierarchical time series data. The forecasting can be done using the hierarchical forecasting model. This model works by forecasting each time series in the hierarchy individually using its best model. However, the forecast result from using this model is not coherent. It means that the forecast result summation of the lower level is not equal to the corresponding upper level forecast result. This forecast result can be improved with the help of reconciliation method, that makes the forecast coherent. Basic reconciliation
method that’s widely used is the bottom-up or top-down method. Even so, this research will use the minimum trace reconciliation method to get that coherent forecasts. This reconciliation method works by minimizing the residual variance, with the condition that the coherent forecast results are already unbiased. This hierarchical forecasting with minimum trace reconciliation method will then be implemented to forecast the unemployment number in Australia and its provinces on year 2020, using the unemployment number data from year 1979 until 2019. Later on, the forecast resulted on each level of the hierarchy will be coherent.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Naufal Luthfi
"Peradaban yang terus berkembang telah membuat konflik antara manusia dan lingkungan menjadi semakin parah sehingga menyebabkan banyak terjadinya bencana alam. Banyak negara yang terdampak oleh bencana alam dan salah satunya adalah Indonesia. Kondisi dan letak geografis Indonesia menyebabkan banyak terjadinya bencana alam di Indonesia. Oleh karena itu, perlu dilakukan pengelompokan daerah bencana alam di Indonesia untuk mengetahui daerah yang paling sering terkena bencana alam. Metode clustering dapat digunakan untuk mengetahui daerah tersebut. Dari studi literatur yang telah dilakukan, belum ada penelitian yang menggunakan metode hierarchical clustering dan fuzzy c-means untuk clustering daerah bencana alam di Indonesia. Maka dari itu, tujuan dari penelitian ini adalah mengklasifikasi daerah yang sering mengalami bencana alam di Indonesia dengan menggunakan metode hierarchical clustering dan fuzzy c-means. Data yang digunakan dalam penelitian ini adalah data bencana alam di Indonesia dari tahun 2019 hingga 2023. Variabel yang digunakan adalah jumlah kebakaran hutan dan lahan, banjir, cuaca ekstrem, gelombang pasang, tanah longsor, kekeringan, erupsi gunung api, dan gempa bumi di setiap kabupaten yang terdampak bencana alam. Hasil clustering menunjukan terdapat 66 daerah yang sering mengalami banjir, 45 daerah yang sering mengalami kebakaran hutan dan gelombang pasang, dan 30 daerah yang sering mengalami cuaca ekstrem, tanah longsor, kekeringan, erupsi gunung api, dan gempa bumi.

The continuously evolving civilization has exacerbated the conflict between humans and the environment, leading to increasingly severe natural disasters. Many countries are affected by natural disasters, and one of them is Indonesia. Indonesia's conditions and geographic location contribute to the occurrence of numerous natural disasters in the country. Therefore, it is necessary to classify areas prone to natural disasters in Indonesia to identify the most frequently affected regions. Clustering methods can be used to determine these areas. From the literature review conducted, there has been no research utilizing hierarchical clustering and fuzzy c-means methods for clustering areas prone to natural disasters in Indonesia. Therefore, the aim of this research is to classify areas that frequently experience natural disasters in Indonesia using hierarchical clustering and fuzzy c-means methods. The data used in this research is the natural disaster data in Indonesia from 2019 to 2023. The variables used include the number of forest and land fires, floods, extreme weather events, tidal waves, landslides, droughts, volcanic eruptions, and earthquakes in each disaster-affected district. The clustering results indicate that there are 66 regions frequently experiencing floods, 45 regions often experiencing forest fires and tidal waves, and 30 regions commonly facing extreme weather, landslides, droughts, volcanic eruptions, and earthquakes."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Lellyana Juliet Wantania
"Penerapan sistem merit telah diamanatkan dalam Undang-undang Nomor 5 Tahun 2014 Tentang Aparatur Sipil Negara yang bertujuan untuk memastikan jabatan pada instansi pemerintah diduduki oleh pegawai dengan persyaratan kualifikasi dan kompetensi terpenuhi. Badan Kepegawaian Daerah Provinsi Sulawesi Utara sebagai instansi yang memiliki kewenangan dibidang kepegawaian, berkewajiban serta bertanggung jawab untuk menciptakan sistem pemerintahan yang bersih termasuk penerapan sistem merit. Pengisian jabatan struktural telah dilakukan sesuai dengan prosedur, namun masih mengalami kesulitan dalam hal pemetaan jabatan. Karenanya penelitian ini dilakukan untuk menentukan pola karier jabatan struktural berbasis kompetensi di lingkungan Pemerintah Provinsi Sulawesi Utara. Metode data mining teknik clustering digunakan pada penelitian ini yaitu dengan menggunakan metode agglomerative hierarchical clustering melalui metode Ward’s dan Orange sebagai perangkat lunaknya. Melalui tahapan Knowledge Discovery in Database (KDD) pengelompokan jabatan dilakukan berdasarkan karakteristik kompetensi teknis sebagai hasil dari standar kompetensi jabatan. Hasil pengelompokan jabatan sebanyak tujuh cluster yang telah divalidasi oleh pejabat terkait. Pola karier yang terbentuk memperlihatkan dua jenis arah pergerakan yaitu arah promosi dan mutasi/rotasi. Arah promosi untuk jabatan dalam satu cluster dengan tingkat jabatan lebih tinggi dari jabatan sebelumnya, sedangkan arah mutasi/rotasi untuk jabatan dalam satu cluster dengan tingkat jabatan yang sama dari jabatan sebelumnya.

The application of the merit system has been mandated in Law Number 5 of 2014 concerning State Civil Apparatus which aims to ensure that positions in government agencies are occupied by employees with the qualification and competency requirements being met. The Regional Civil Service Agency of North Sulawesi Province as an agency that has the authority in the field of personnel, is obliged and responsible for creating a clean government system, including the implementation of a merit system. The filling of structural positions has been carried out in accordance with procedures, but there are still difficulties in terms of position mapping. Therefore, this research was conducted to determine the career pattern of competency-based structural positions within the North Sulawesi Provincial Government. The data mining method of clustering technique used in this study is by using the agglomerative hierarchical clustering method through the Ward's and Orange methods as the software. Through the Knowledge Discovery in Database (KDD) stages, job grouping is carried out based on the characteristics of technical competence as a result of job competency standards. The results of the grouping of positions are seven clusters that have been validated by the relevant officials. The career pattern formed shows two types of movement directions, namely the direction of promotion and transfer/rotation. The direction of promotion for positions in a cluster with a higher level of position than the previous position, while the direction of mutation/rotation for positions in a cluster with the same level of position from the previous position"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>