Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 73050 dokumen yang sesuai dengan query
cover
Derry Alamsyah
"ABSTRAK
Pada penelitian ini, penulis mencoba merealisasikan sistem pelacakan ujung-ujung jari yang diperuntukan untuk interaksi yang lebih baik antara manusia dan komputer serta untuk membantu penangkapan gerak jemari tangan guna pembuatan animasi 3D. Pelacakan posisi
ujung-ujung jari dilakukan dalam dua proses terpisah yakni: (1) pelacakan posisi dua dimensi (2D) vertical dan horizontal atau posisi (, ) dari citra RGB (red, green, blue); (2) pelacakan dimensi ketiga yaitu () dari citra kedalaman atau depth images yang dikalibrasi, yang kemudian disatukan kedalam pelacakan posisi tiga dimensi (, , ) menggunakan Particle Filter (PF).
Posisi 2D atau (, ) ditemukan dengan cara menghitung Convex Hull 2D dari citra hasil binerisasi citra asli. Sedangkan posisi 3D ditentukan menggunakan metode Stephane-Magnenat dari citra kedalaman. Setelah itu, masing-masing ujung jari dilacak oleh beberapa pelacak PF
secara simultan dengan teknologi multithreading.
Untuk menguji efektifitas sistem yang dikembangkan penulis membuat modul grafika tangan 3D untuk mensimulasikan gerakan tangan hasil pelacakan. Hasil pelacakan ujung-ujung jari ini kemudian juga digunakan untuk mensimulasikan kontrol pembesaran (zoom-in) dan
pengecilan (zoom-out) yang banyak dilakukan pada interaksi manusia dengan televisi maupun perangkat tablet melalui pembesaran dan pengecilan objek sederhana seperti bola dengan gerakan jemari tangan. Selain itu, penulis juga mengukur tingkat akurasi, overhead waktu
komputasi, dan kemampuan untuk beradaptasi terhadap halangan atau occlusion dalam beberapa skenario eksperimen. Penanganan occlusion dilakukan dengan memprediksi gerakan jari menggunakan suatu model linier.
Hasil dari penelitian ini menunjukan bahwa PF merupakan metode yang baik dalam melacak yaitu ditunjukan dengan rata-rata error yang rendah, kurang dari 2. Kemudian untuk penangan occlusion didapat rata-rata error kurang dari 3. Selain itu, Kemampuan sistem baik, yaitu dalam merealisasikan informasi pelacakan ujung jari kedalam animasi tangan 3D dan antar muka alami sederhana sebagai uji kasus ditunjukan dengan kemampuan menirukan gerakan
tangan dan dalam mengontrol operasi zoom in/out.
ABSTRACT
This research tried to realize a fingertips tracking system for better interaction between
human and computer as well as to assist fingers motion capture for 3D animation building.
Fingertips tracking performed in two separate ways, they are: (1) fingertips tracking in 2D
horizontal and vertical (x, y) position in RGB (red, green, blue) image. (2) tracking in 3rd
dimension (z) from calibrated depth image, then incorporated in 3D using particle filter (PF). 2D
position is found by computing 2D convex hull from extracted binary image. other, found by
Stephane Magnenat approach in depth image. After that, each fingertips is tracked by several PF
at once with multithreading technology.
To test the effectiveness of developed system, 3D hand graphic module is applied to
simulate tracked hand motion. Then, tracked fingertips is applied to simulate scale control such
as zoom in/out process commonly done in interaction between human and television or tablet
through simple scaling object at ball using fingertips. In addition, accuracy, time overhead and
occlusion handling is added in several scenario. Occlusion handling is performed by predicting
fingertip motion in linier model.
The result, PF is reliable method in tracking shown at low average error, less from 2.
Then in occlusion handling, obtained average error less from 3. Moreover, System ability is
reliable in realizing fingertips tracking information into 3D hand animation and simple natural
user interface (NUI) as case study in this research, shown by proper system motion copy and
scaling object abilities."
2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bariqi Abdillah
"ABSTRAK
Pelacakan multi objek merupakan salah satu topik penting pada bidang ilmu komputer yang memiliki banyak aplikasi, diantaranya adalah sebagai sistem pengawasan, navigasi robot, analisis bidang olahraga, autonomous driving car, dan lain-lain. Salah satu permasalahan utama pelacakan multi objek adalah oklusi. Oklusi adalah objek yang tertutupi oleh objek lainnya. Oklusi dapat menyebabkan ID antar objek tertukar. Penelitian ini membahas oklusi pada pelacakan multi objek serta penyelesaiannya dengan Network Flow. Diberikan data deteksi objek-objek pada setiap frame-nya, tugas pelacakan multi objek adalah mengestimasi pergerakan setiap objek kemudian menghubungkan objek-objek hasil estimasi dengan objek-objek pada frame berikutnya yang bersesuaian atau yang lebih dikenal dengan asosiasi data. Pandang setiap objek pada sebuah frame sebagai node, kemudian ada edge yang menghubungkan setiap node pada frame satu dengan frame lainnya, arsitektur seperti ini pada teori graph dikenal dengan Network Flow. Kemudian cari himpunan edge yang memberikan peluang terbesar transisi dari suatu frame ke frame berikutnya, atau pada dunia optimisasi lebih dikenal dengan max-cost network flow. Edge pada kasus ini berisikan informasi seberapa besar peluang suatu node berpindah ke node pada frame setelahnya. Perhitungan peluang berdasarkan jarak posisi dan kemiripan fitur, fitur yang digunakan adalah fitur CNN. Penulis memodelkan max-cost network flow sebagai permasalahan maximum likelihood yang kemudian diselesaikan dengan algoritme Hungarian. Data yang digunakan pada penelitian ini adalah 2DMOT2015. Hasil evaluasi performa menunjukkan sistem yang dibangun memberikan akurasi 20.1% dengan ID yang tertukar sebanyak 3084 dan pemrosesan frame yang cepat, mencapai 215.8 frame/second.

ABSTRACT


Multi object tracking is one of the most important topics of computer science that has many applications, such as surveillance system, navigation robot, sports analysis, autonomous driving car, and others. One of the main problems of multi-object tracking is occlusion. Occlusion is an object that is covered by other objects. Occlusion may cause the ID between objects to be switched. This study discusses occlusion on multi-object tracking and its completion with network flow. Given objects detection on each frame, the task of multi object tracking is to estimate the movement of objects and then connect the estimation objects corresponding to the objects in the next frame or well known as the data association. Notice that each object on a frame as a node, then there is an edge connecting each node on a frame with other frames, this architecture in graph theory is known as network flow. Then find the set of edges that provide the greatest probaility of transition from one frame to the next, or to the optimization problem well known as max-cost network flow. Edge contains information on how probabiltity a node moves to the node in the frame afterwards. This probability calculation is based on position distance and similarity feature between frames, the feature used is CNN feature. We modeled max-cost network flow as the maximum likelihood problem which was then solved with the Hungarian algorithm. The data used in this research is 2DMOT2015. Performance evaluation results show that the system built gives accuracy 20.1% with the ID switch is 3084 and fast computational process on 215.8 frame/second.

"
2018
T52044
UI - Tesis Membership  Universitas Indonesia Library
cover
Rajagukguk, Bontor Parlindungan
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1993
S26907
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Telah dibuat sebuah sistem pakar untuk ''trobleshooting'' komputer, yang diberi nama EXACT (expert system advisor for computer trobleshooting). Sistem pakar ini ditujukan sebagai penasehat perbaikan perangkat keras komputer pribadi IBM PC dan kompatibel. Proses pembuatan EXACT melalui tiga tahapan. Tahap pertama adalah akuisisi pengetahuan. Tahap kedua adalah representasi pengetahuan dan tahap terakhir yaitu pembuatan kelopak sistem pakar. Tahapan operasi EXACT adalah menanyakan gejala kerusakan dan keadaan perangkat keras, memberikan langkah-langkah untuk mengidentifikasi kerusakan, menyimpulkan letak kerusakan komputer, dan memberikan nasehat dan rekomendasi. Bagi pengguna komputer awam, EXACT akan memberikan nasehat bagaimana mengatasi masalah kerusakan komputer. Bagi teknisi, EXACT dapat membantu mengurangi kebingunan yang berhubungan dengan ''troubleshooting'' serta mempercepat proses diagnosa. "
JURFIN 2:8 (1998)
Artikel Jurnal  Universitas Indonesia Library
cover
Esti Merindasari
"

Pengenalan emosi dasar melalui ekspresi wajah menjadi domain penelitian yang berkembang saat ini. Berbagai metode machine learning telah digunakan untuk permasalahan ini. Dewasa ini, metode deep learning terbukti lebih robust untuk penyelesaian domain pengenalan emosi dasar. Salah satu metode deep learning yang dapat digunakan adalah deep belief network-deep neural network (DBN). Metode ini sebelumnya berhasil diujikan untuk pengenalan citra CIFAR-10 dan MNIST, namun masih belum digunakan untuk dataset citra emosi wajah. Oleh karena itu, pada penelitian ini, kami menggunakan DBN-DNN untuk pengenalan emosi dasar. DBN-DNN diujikan dengan 2 (dua) skema eksperimen yakni DBN-DNN dimensi penuh dimensi tereduksi. Hasil dari kedua skema menunjukkan bahwa DBN-DNN berhasil diujikan pada dataset citra wajah MUG, CK+, dan IMED untuk pengenalan 7 (tujuh) kelas emosi dasar yaitu marah, jijik, takut, senang, netral, sedih, dan terkejut. Skema DBN- DNN dimensi penuh, berhasil mendapatkan akurasi pengenalan emosi dasar pada citra wajah dataset MUG sebesar 94.07%, dengan waktu komputasi yang cukup lama yakni 7 jam 13 menit. Berbeda halnya dengan pengenalan DBN- DNN dimensi penuh pada citra wajah dataset CK+ dan MUG, meskipun waktu yang dibutuhkan saat pengenalan cukup singkat yakni 11 menit untuk  CK+ dan 7 menit untuk IMED, akurasi yang didapatkan masih cukup kecil yakni 40.64% untuk CK+ dan 44.43% untuk IMED. Kecilnya akurasi pengenalan CK+ dan IMED, dipengaruhi oleh jumlah data yang kurang banyak, berbeda dengan MUG yang mencapai 9805 data. Sehingga, DBN-DNN kurang optimal dalam melakukan proses pembelajaran pada kedua dataset tersebut, CK+ dan IMED. Sedangkan, pada skema DBN-DNN dimensi tereduksi, akurasi berhasil meningkat baik untuk pengenalan pada dataset MUG, CK+ dan IMED. Akurasi pengenalan pada MUG mencapai 94.75%, CK+ 52.84%, dan IMED 56.58%. Waktu komputasi yang diperlukan dalam pengenalan pun juga lebih efisien khususnya pada dataset MUG, menjadi 3 jam 45 menit termasuk proses reduksi dimensi SVD di dalamnya. Hal ini berbeda untuk dua dataset lain, CK+ dan IMED, keduanya membutuhkan waktu cukup lama untuk proses reduksi dimensi karena SVD menggunakan jumlah dimensi 16384 untuk mendekomposisi matriks. Namun, jika waktu yang digunakan untuk proses DBN-DNN nya saja relatif lebih singkat dari DBN-DNN dimensi penuh, yakni 2 menit untuk CK+ dan 1 menit untuk IMED.

 


Facial emotion recognition using facial expression has been popular in these past years. There are many machine learning methods used for recognition tasks.  Currently, the most robust method for this domain is deep learning. One type of deep learning method that can be used is the deep belief network – deep neural network (DBN-DNN). Although DBN-DNN has been used for recognizing CIFAR-10 and MNIST datasets, it has not yet been used for facial emotion recognition. Hence, in this research, we attempt to use the DBN-DNN for recognizing facial emotions. This research consists of two experimental schemes, DBN-DNN with full dimension and DBN-DNN with the reduced dimension. The result of these experiments shows that using the MUG facial emotion dataset, DBN-DNN has successfully recognized 7 (seven) classes of basic emotions, angry, disgust, fear, happy, neutral, sadness, and surprise. DBN- DNN with full dimension has successfully reached 94.07% accuracy for recognizing 7 ( seven) basic emotions from the MUG dataset, even the run time needed is not efficient, 7 hours and 13 minutes. Meanwhile, the CK+ dan IMED dataset is not quite good at accuracy, even the run time is quite short, 11 minutes for CK+ dataset and 7 minutes for the IMED dataset. The accuracy for the CK+ dataset reaches 40,64% and 44.43% for the IMED dataset. This accuracy occurs because of the lack number of data that is processed by DBN-DNN. DBN-DNN is good at a lot of the number of data, like MUG with 9805 data. On the other hand, DBN-DNN with reduced dimension has successfully reached higher accuracy for MUG (94.75%), CK+ (52.84%) and IMED (56.58%) The run time also more efficient, especially on MUG Dataset (3 hours and 45 minutes). But, CK+ and IMED need a longer time for finishing the dimensionality reduction with SVD. Its because the number of dimensions processed by SVD uses a full dimension of the matrix, 16384. Hence, it needs more time to run the SVD. But, the time need for processing DBN-DNN after finishing the SVD, only need 2 minutes for CK+ dataset and 1 minute for IMED dataset.

 

"
T54428
UI - Tesis Membership  Universitas Indonesia Library
cover
Sri Harini Mahmudi
"ABTRAK
Suatu model tree dipakai untuk mempelajari faktorisasi matriks sparse simetris indefinit dengan cara pemilihan pivot diagonal. Struktur dasar yang digunakan adalah eliminasi tree dan eliminasi delay (eliminasi tertunda).
Proses faktorisasi untuk matriks yang indefinit dapat dipandang sebagai suatu barisan transformasi tree yang didasari oleh data/informasi struktural dan data nilai-nilai numerik matriks. Hal tersebut memberikan suatu model dasar untuk mempelajari berbagai aspek numerik dari dekomposisi matriks sparse indefinite
"
Depok: Universitas Indonesia, 1990
T4111
UI - Tesis Membership  Universitas Indonesia Library
cover
Verdi March
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2000
S26952
UI - Skripsi Membership  Universitas Indonesia Library
cover
Oni Budipramono
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 1997
S26982
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Ilmu Komputer Universitas Indonesia, 1995
S26896
UI - Skripsi Membership  Universitas Indonesia Library
cover
Galih Andy Pradana
"Rumah cerdas adalah rumah yang dapat memberikan layanan kepada penghuninya sesuai dengan konteks yang sedang berlangsung saat ini. Salah satu konteks yang dijadikan acuan oleh rumah cerdas untuk memberikan layanan kepada penghuninya adalah konteks lokasi penghuni dan perangkat. Dalam beberapa penelitian rumah cerdas di Fasilkom UI, belum diimplementasikan modul yang memiliki fungsi untuk memahami konteks lokasi tersebut. Penelitian ini akan mengimplementasikan modul yang berfungsi untuk mengidentifikasi lokasi penghuni dan perangkat dengan menggunakan projective transformation yang meliputi perspective grid dan pendeteksian manusia pada citra video. Dari lokasi penghuni dan perangkat tersebut dapat diturunkan informasi lain seperti perangkat-perangkat terdekat dengan penghuni dan jaraknya dengan penghuni.

Smart home is a home that can provide services to it’s occupants according to the current ongoing context. One of the contexts that is used as reference, by the smart home to give services to it’s occupants, is the occupants location and devices location. There were some study about smart home in Fasilkom UI, but none of them implemented a module that has functionality for understanding the location context. This study will implement a module that will identify the location of occupants and devices using perspective grid on the image from video. Based on the occupant location and devices location, we can derive the other information such as the closest devices to the occupant dan the distance between them."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>