Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 162279 dokumen yang sesuai dengan query
cover
Ibrahim Malik Khasbulloh
"ABSTRAK
Di tengah persaingan e-commerce di Indonesia yang semakin ketat, membuat perusahaan e-commerce dituntut dapat bersaing dalam memberikan nilai tambah layanan bagi pelanggannya agar dapat meningkatkan jumlah pelanggan dan disertai dengan angka pemesanan yang meningkat juga. Hal ini juga berlaku bagi e-commerce dalam industri pariwisata, salah satunya Triptrus. Salah satu tantangan yang dihadapi Triptrus adalah untuk meningkatkan angka conversion rate. Salah satu cara peningkatan angka conversion rate adalah pemberian fitur rekomendasi produk. Penelitian ini bertujuan untuk mencari metode yang dapat memberikan rekomendasi terbaik yang pada akhirnya bertujuan agar dapat meningkatkan angka conversion rate dari Triptrus yang masih rendah. Pada penelitian ini dilakukan pencarian metode rekomendasi yang terbaik disesuaikan dengan data internal yang dimiliki Triptrus. Penelitian ini bermula dari pengumpulan data internal untuk kemudian dibangum model rekomendasi menggunakan beberapa metode. Metode yang digunakan dalam penelitian ini diantaranya collaborative filtering, content based filtering, Hybrid Filtering dan stochastic gradient descent. Berdasarkan hasil penelitian, metode collaborative filtering, content based, dan hybrid kurang mampu memberikan rekomendasi yang cukup baik terhadap data Triptrus. Hasil terbaik dari ketiga metode ini didapatkan metode hybrid dengan nilai error RMSE 0.71. Di sisi lain algoritma stochastic gradient descent dapat memberikan rekomendasi paling baik dan memberikan ratio error RMSE paling kecil yaitu 0.11. Hasil penelitian ini adalah model rekomendasi produk yang dapat memberikan rekomendasi terbaik berdasarkan data internal Triptrus yaitu model yang dihasilkan menggunakan metode stochastic gradient descent.

ABSTRACT
Indonesian e commerce markets are getting more tight. This condition forces e commerce companies to provide value added services for their customer in order to increase numbers of customer, which also followed by increasing number of purchases. This also happened in tourism e commerce company, Triptrus. The challenge that triptrus faces is how to increase their conversion rates. One way to increase the number of conversion rate is the provision of a product recommendation feature. The purpose of this research is to find the best recommendation method that can improve conversion rate in Triptrus. In this research we looked for the best recommendation method that adapted to internal data of Triptrus. This research started with gathering internal data that followed by build recommendation based on several methods. Methods that used in this research are collaborative filtering, content based filtering, hybrid filtering and stochastic gradient descent. Based on the research result, collaborative filtering, content based, and hybrid lack of capability to give good recommendation. The best result from these three methods is hybrid with an error 0.71. In the other side stochastic gradient descent could gave best recommendation with smallest error ratio RMSE at 0.11. The result of this research is recommendation model that can give best recommendation adapted to Triptrus internal data. Best recommendation model is model that generated by stochastic gradient descent."
2017
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rangga Kharisma Putra
"ABSTRAK
Tren belanja yang terus meningkat mendorong tumbuhnya bisnis e-commerce di Indonesia yang salah satunya adalah suatu perusahaan e-commerce di Indonesia. Salah satu peran penting untuk mendukung bisnis e-commerce adalah kategorisasi produk yang baik. Kategorisasi produk yang baik akan membuat pencarian produk sesuai dengan kebutuhan dari pelanggan. Hal ini berdampak baik pada tingkat penjualan, pengalaman pengguna, maupun pengelolaan produk di sisi internal perusahaan. Akan tetapi, terdapat temuan kesalahan kategori yang penyebab utamanya adalah proses kategorisasi yang masih bersifat manual, berulang, dan massive.
Penelitian ini bertujuan untuk membantu menyelesaikan permasalahan tersebut dengan membuat suatu model yang mampu melakukan klasifikasi produk secara otomatis. Data yang digunakan adalah judul produk, sedangkan untuk label adalah kategori dari setiap produk. Penelitian ini melakukan percobaan terhadap dua representasi yaitu bag-of-words (BoW) dan TF-IDF. Selain itu, penelitian ini menggunakan algoritma naïve bayes dan SVM dalam percobaannya.
Hasil dari penelitian ini didapatkan model yang mampu melakukan klasifikasi produk salah satu perusahaan e-commerce secara baik. Kombinasi BoW dan SVM mampu menghasilkan model performa yang terbaik dengan nilai akurasi 96.40% dan F-measure 95.90%. Selain itu dari penelitian ini didapatkan hasil representasi BoW memberikan performa yang lebih baik dibandingkan dengan TF-IDF.

ABSTRACT
The increasing shopping trend encourages the growth of e-commerce businesses in Indonesia, one of which is e-commerce company in Indonesia. On of the important role to support e-commerce business is well-managed product categorization. Good product categorization will impact the product search according to the customer needs. This will affect the level of sales, user experience, and product management in the internal side of the company. However, some errors were found in the product category, the main causes are the manual categorization, repetitive, and massive process.
This study is aimed to solve the problem by making a model that able to classify products automatically. The data that used in this study is the product title, while the label is the category of each product. This study conducted experiments on two representations; bag-of-words (BoW) and TF-IDF. In addition, this study is using naïve bayes and SVM algorithms in the experiment.
This study resulted a model that able to classify one of e-commerce company products properly. The combination of BoW and SVM is able to produce the best performance model with an accuracy value of 96.40% and F-measure 95.90%. On the other hand, the results of the BoW representation provided the better performance than the TF-IDF."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Adi Saepul Anwar
"Peningkatan persaingan dan kunjungan di situs web e-commerce shopping mall di Indonesia perlu disertai dengan meningkatkan strategi Customer Relationship Management CRM . Strategi yang bisa digunakan adalah peningkatan kualitas pelayanan, hal ini bisa di implementasikan melalui penyusunan sistem rekomendasi produk di situs web e-commerce tersebut. Untuk menyusun sistem tersebut, penggalian pola asosiasi produk dilakukan dengan memanfaatkan data web log yang berisi data navigasi dan pola kebiasaan pelanggan. Hal tersebut diakomodasi oleh metode web usage mining yaitu association rules. Algoritma yang digunakan adalah algoritma yang memberikan input asosiasi berdasarkan frekuensi item, yakni algoritma Apriori. Untuk menguji dan menyeleksi pola yang dihasilkan, objective interestingness measure dilakukan dan menghasilkan 25 luaran pola asosiasi.

An increasing of competition and visitors on e commerce shopping mall websites in Indonesia, need to be accompanied by improving Customer Relationship Management strategy. A strategy that can be used is improving the quality of services, it can be implemented through the preparation of product recommendation system on the e commerce website. To compile the system, pattern recognition of product association is conducted by utilizing weblog data which contains navigation data and customer behavior pattern. It is accommodated by web usage mining method that is association rules. The algorithm applied is an algorithm that provides input association based on item frequency, i.e Apriori algorithm. To test and select the resulting pattern, objective interestingness measure was performed and yields 25 outcomes of the association pattern."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67205
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hamim Tohari
"PT XYZ merupakan salah satu e-commerce dengan model bisnis B2B yang ada di Indonesia. Sebagai salah satu e-commerce baru, PT XYZ terus berusaha meningkatkan pelayanannya agar lebih banyak lagi pelanggan yang datang berbelanja salah satunya adalah dengan menambah jumlah variasi produknya. Namun sayangnya hal ini justru menimbulkan dampak negatif bagi PT XYZ. Berdasarkan data penjualan Q4 tahun 2018 diketahui bahwa penjualan hanya terpusat pada produk-produk tertentu saja, sedangkan untuk produk selain itu penjualannya sangat kecil dan bahkan ada yang tidak terjual sama sekali. Tidak terjualnya produk-produk tertentu menimbulkan ancaman kerugian karena PT XYZ menerapkan kerja sama beli putus dengan pemasoknya, sehingga kerusakan barang selama masa penyimpanan akan ditanggung oleh PT XYZ. Fenomena penjualan yang hanya terpusat pada produk-produk tertentu saja disebut dengan long tail. Salah satu solusi dari permasalahan tersebut adalah dengan lebih banyak merekomendasikan produk-produk kurang populer (niche product) kepada pelanggan menggunakan sistem rekomendasi. Tantangan dalam merekomendasikan produk long tail adalah sistem harus tetap memperhitungkan kesesuaian produk yang direkomendasikan dengan perferensi pelanggan. Selian itu saat ini sebagian besar pendekatan sistem rekomendasi cenderung memperburuk kondisi tersebut. Misalnya saja pendekatan dengan menggunakan collaborative filtering yang pada akhirnya justru merekomendasikan produk yang populer diantara pelanggan. Begitu juga dengan association rule yang bekerja dengan merekomendasikan produk yang sifatnya umum dan populer. Oleh karena itu pada penelitian ini dibangun model sistem rekomendasi dengan pendekatan berbeda dengan menggunakan graf tripartite. Agar dapat menghasilkan rekomendasi yang sesuai, algoritma hitting time dan absorbing time dikombinasikan dengan menggunakan Markov random walker untuk menentukan produk long tail yang sesuai untuk direkomendasikan ke pelanggan. Hasil dari penelitian ini menunjukkan bahwa model rekomendasi dengan algoritma absorbing time menghasilkan akurasi yang lebih baik dibandingkan hitting time. Selain itu jika dilihat dari sisi diversity, meskipun secara keseluruhan hitting time lebih bagus, yaitu 0,047 berbanding 0,057, namun pada top 5 rekomendasi absorbing time menghasilkan diversity yang lebih baik.

PT XYZ is one of e-commerce with B2B business models in Indonesia. As a new e-commerce, PT XYZ keeps trying in various ways to improve its services to attract more customers, one of them is by increasing the product variations. Unfortunately this has a bad impact on PT XYZ. Based on Q4 2018 sales data, it is known that sales are only focused on certain products while the remainings are unsold. This condition poses a threat of loss because PT XYZ cooperate with its suppliers using flat fee agreement, so that the damage goods during the storage period will be borned by PT XYZ. The phenomenon of sales that is only dominated by certain products is called long tail. One of possible solution to these problems is to recommend more niche products to customers using a recommendation system. The challenge in recommending long tail products is that the system must keep consider about the suitability of the recommended products with the customer preferences. Furthermore, most of the current recommendation system approaches tend to worsen the condition. For example, the approach using collaborative filtering, which ultimately recommends products that are popular among customers. Likewise with the association rule that works by recommending products that are general and popular. Therefore in this research a recommendation system model was built with a different approach, that is tripartite graphs. In order to produce recommendations, the hitting time and absorbing time algorithms are combined with a Markov random walker to determine the long tail product that is suitable for customers. The results of this study indicate that the recommendation model with absorbing time algorithm produces better accuracy than hitting time. In addition, based diversity value, even though hitting time is better, which is 0.047 compared to 0.057, but in the top 5 recommendations absorbing time produces better diversity."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Cita Pelangi Putri Sulistyoadi
"ABSTRAK
Perusahaan e-marketplace perlu menjaga dan meningkatkan kualitas aplikasi mobile dan layanan melalui evaluasi berdasarkan opini pelanggan untuk mengembangkan perusahan dan memenangkan kompetisi antar perusahaan sejenis. Salah satu bentuk opini pelanggan terdapat di toko penyedia aplikasi, seperti Google Play Store dan App Store. Ulasan online ini dapat dimanfaatkan oleh perusahaan e-marketplace, yaitu dengan melakukan analisis opini pelanggan opinion mining terhadap aplikasi dan layanan e-marketplace berdasarkan aspek pendukungnya. Penelitian ini menggunakan ulasan berbahasa Inggris dan Indonesia yang ada pada Google Play Store dan App Store guna mengetahui penilaian pelanggan terhadap enam perusahan e-marketplace di Indonesia, yaitu BliBli, Bukalapak, Lazada, OLX, Shopee dan Tokopedia. Ulasan berbaasa Inggris diolah berdasarkan prinsip Recursive Neural Tensor Network RNTN dengan dua macam pengolahan yaitu dengan lemmatization dan tanpa lemmatization. Ulasan berbahasa Indonesia diolah berdasarkan dictionary-based approach dengan dua macam pengolahan yaitu dengan stemming dan tanpa stemming. Uji akurasi dari luaran opinion mining menunjukkan bahwa ulasan berbahasa Inggris lebih baik diolah dengan melakukan lemmatization, sedangkan ulasan berbahasa Indonesia lebih baik diolah tanpa melakukan stemming . Hasil penelitian dapat digunakan untuk meningkatkan kualitas aplikasi dan layanan tiap perusahaan e-marketplace kedepannya.

ABSTRACT
E marketplace companies need to maintain and improve the quality of mobile application and services through an evaluation based on customer opinions to grow the company and win competition among similar companies. One form of customer opinion is found in app store stores, such as Google Play Store and App Store. This online review can be utilized by e marketplace company, by conducting customer rsquo s opinion analysis opinion mining of e marketplace application and services based on its supporting aspects. This study use English and Indonesian reviews available on Google Play Store and App Store platforms to determine customer ratings for six e marketplace companies in Indonesia, namely BliBli, Bukalapak, Lazada, OLX, Shopee and Tokopedia. English based reviews are processed based on the principle of Recursive Neural Tensor Network RNTN with two kinds of processing, with lemmatization and without lemmatization. Indonesian language reviews are processed based on dictionary based approach with two kinds of processing, with stemming and without stemming. The accuracy test from the results of the opinion mining shows that the English reviews are better processed with lemmatization, while Indonesian reviews are better processed without stemming. The results of the research can be used to improve applications and services quality of each e marketplace company in the future."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Listian Pratomo
"Jumlah review mengalami peningkatan yang sangat pesat untuk setiap produk nya. Hal ini berakibat sulit nya bagi setiap pengguna untuk membaca semua review yang ada. Karya akhir ini menawarkan solusi menggunakan feature based opinion mining untuk mempermudah pengguna membaca review lebih mudah. Pada karya akhir ini terdapat 2 langkah yang akan dilakukan. Langkah pertama ialah melakukan ekstraksi feature menggunakan association rule dan pruning. Sedangkan langkah terakhir ialah menentukan orientasi dari setiap opini dengan menggunakan teknik klasifikasi. Beberapa algoritma klasifikasi seperti C45, Naïve Bayes dan Support Vector Machine cocok untuk mengatasi masalah ini. Dari hasil pengujian algoritma Support Vector Machine memiliki performa terbaik jika dibandingkan dengan algoritma lainnya.

The number of customer reviews for each product grows rapidly. This condition makes customer difficult to read all the review.This thesis propose feature based opinion mining to help customer reads review easily. Feature based opinion mining in this thesis consist of two steps. First step identify product features using association technique and pruning. The last step identify opinion sentence orientation using classification technique. Several classification algorithm, such as C45, Naive Bayes, and Support Vector Machines are good approaches to solve this problem. Support Vector Machine has the best performance compared to other algorithms."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Surya Yehezki
"Meningkatnya penggunaan internet di Indonesia memberikan dampak positif bagi perkembangan e-commerce di Indonesia dengan jumlah pengguna internet telah melakukan transaksi elektronik sebesar 63,5 . Dengan meningkatnya jumlah e-commerce B2C di Indonesia, diperlukannya strategi promosi yang tepat untuk mengetahui preferensi dan potensi pembelian untuk setiap konsumen sehingga dapat meningkatkan transaksi e-commerce tersebut. Web usage mining merupakan salah satu metode yang dapat mengolah data web log pengguna situs web e-commerce B2C menjadi informasi yang dapat digunakan untuk mengklasifikasi keputusan pembelian pengguna situs web.
Kombinasi kategori produk pembelian yang tinggi oleh pengguna situs web e-commerce memerlukan teknik klasifikasi multi label yang dapat mengklasifikasi kombinasi pembelian secara bersamaan. Metode Label Powerset dengan algoritme Support Vector Machine SVM digunakan untuk mengklasifikasi keputusan pembelian pengguna situs web e-commerce. Seleksi fitur menggunakan Information Gain dan pemilihan parameter dengan menggunakan Grid Search terbukti dapat meningkatkan akurasi klasifikasi.

The advance of internet usage in Indonesia has a positive impact on the development of e commerce in Indonesia where 63.5 of internet users have made online transactions. Along with e commerce B2C growth in Indonesia, it is necessary for an effective promotional strategy to know the preferences and potential purchases for each consumer with the result that to increase transactions. Web usage mining is a method having an ability to convert web log data into information used for purchase classification.
The high combination of purchasing product categories by users of e commerce website required a multi label classification technique that could classify those combinations. Label Powerset method with Support Vector Machine SVM algorithm was applied to classify e commerce users purchases decision. The proposed feature selection with Information Gain and parameter selection using Grid Search could prove that they had an ability to enhance classification accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67081
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ketut Gde Manik Karvana
"Banyak perusahaan yang telah menyadari bahwa mereka harus berusaha keras tidak hanya mendapatkan pelanggan baru, namun juga untuk mempertahankan pelanggan lama. Memprediksi nasabah yang akan pergi mulai dilakukan oleh perusahaan. Prediksi nasabah churn adalah kegiatan yang dilakukan untuk memprediksi nasabah tersebut akan meninggalkan perusahaan atau tidak.
Banyak cara yang dapat dilakukan untuk memprediksi nasabah churn. Salah satu cara memprediksi nasabah churn ini adalah dengan menggunakan teknik klasifikasi dari data mining yang menghasilkan sebuah model machine learning. Dengan mempelajari data nasabah seperti data demografi, data transaksi dan data kepemilikan produk maka, perusahaan akan bisa memprediksi nasabah yang akan churn, sehingga perusahaan dapat melakukan tindakan pencegahan agar nasabah tersebut tidak berhenti untuk menggunakan jasa dari perusahaan.
Penelitian ini membandingkan beberapa metode dari teknik klasifikasi data mining dan pengukuran dari sampel datanya. Dari penelitian ini didapat bahwa metode Support Vector Machine (SVM) dengan perbandingan sampling kelas data 50:50 merupakan metode terbaik untuk memprediksi nasabah churn di Bank XYZ. Hasil dari pemodelan ini bisa digunakan untuk mendapatkan informasi nasabah yang akan pergi meninggalkan perusahaan sehingga perusahaan dapat mengambil tindakan sebelum nasabah tersebut pergi.

Many companies have realized they must strive not only to get new customers but also to retain old customers. The company began to predict customers who would no longer use company services. Churn customer prediction is an activity carried out to predict whether the customer will leave the company or not.
There are many ways that can be done to predict churn customers, usually to predicting this customer churn by using a classification technique from data mining that produces a machine learning model. Studying customer historical data such as demographic data, transaction data and product ownership data, will be able to predict customers who will churn and can take preventive measures so these customers do not stop using services from the company.
This study compares several methods of data mining classification techniques and measurements from data samples. From this study it was found that the method of Support Vector Machine (SVM) with a comparison of 50:50 data class sampling is the best method for predicting churn customers at Bank XYZ. The results of this modeling can be used to obtain information on customers who will stop using  company services so the company can take action before the customer leaves.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Tosan Wiar Ramdhani
"Pemerintah Kota Bogor merupakan salah satu bagian dari Pemerintah Provinsi Jawa Barat yang memiliki jumlah pegawai lebih dari 9000 orang. Pengelolaan kepegawaian dilakukan oleh Badan Kepegawaian Pendidikan dan Pelatihan Kota Bogor (BKPP). BKPP membentuk tim Badan Pertimbangan Jabatan dan Kepangkatan (Baperjakat) dalam tugas pengangkatan, pemindahan dan pemberhentian PNS dalam dan dari jabatan struktural Eselon IIA ke bawah. Baperjakat mengalami masalah dalam menyusun calon pejabat struktural yang selama ini dilakukan secara manual, meskipun sudah memiliki aplikasi Sistem Informasi Manajemen Kepegawaian (SIMPEG) sebagai aplikasi pengelolaan kepegawaian.
Penelitian ini melakukan identifikasi pola pengisian jabatan struktural di lingkungan Pemerintah Kota Bogor dengan menggunakan data jabatan struktural tahun 2009 hingga 2013 yang bersumber dari basis data SIMPEG. Berbagai algoritma data mining dari teknik classification diujicobakan untuk mengidentifikasi pola pengisian jabatan struktural.
Dari hasil classification, algoritma Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) menjadi algoritma terbaik dalam akurasi class eselon dengan tingkat akurasi rata-rata sebesar 95,7% untuk setiap tingkat eselon.
Pola yang dihasilkan dapat menjadi rules yang akan diimplementasikan sebagai modul baru dalam aplikasi SIMPEG yang berfungsi memberikan usulan dalam pengisian jabatan struktural yang ditempatkan secara otomatis. Urutan atribut yang secara dominan muncul pada setiap tingkat eselon adalah atribut jenjang jabatan, pangkat golongan, pendidikan dan pelatihan, tingkat pendidikan, masa kerja, pengalaman dalam unit kerja, serta umur.

Bogor District Government is a part of West Java Province Government, which employs more than 9,000 employees. The human resources are managed by human resources and training division that is called Badan Kepegawaian Pendidikan dan Pelatihan (BKPP). BKPP form a team called Badan Pertimbangan Jabatan dan Kepangkatan (Baperjakat), who are responsible for promoting, rotating and dismissing local government employees from structural positions below the Echelon IIA positions. Baperjakat have problems on constructing the draft of structural government positions. These processes were done manually, even though BKPP have a human resources information systems called SIMPEG.
The main purpose of this research is to identify patterns of filling structural positions at Bogor Local Government using the structural position data from 2009 to 2013. The data were taken from the SIMPEG database. Various data mining classification algorithms were tested to identify filling structural position patterns.
The classification process yields Classification Rule with Unbiased Interaction Selection and Estimation (CRUISE) as the best algorithm in echelon class. Its average accuracy is 95.7% for each echelon level.
The discovered patterns can be applied as base rules that will be implemented as new modules of SIMPEG. These new modules can provide suggestions for automatically filling structural positions. The order of attributes, which dominantly show at each echelon, are hierarchy type, class rank, training education, level of education, working period, experience within division and age.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Adityan Iguh Sasmito
"Pensiun adalah jaminan hari tua dan penghargaan atas jasa aparatur sipil negara yang telah mengabdikan diri kepada negara. PT Taspen (Persero) sebagai Badan Usaha Milik Negara yang diberikan tugas oleh pemerintah untuk mengelola asuransi sosial aparatur sipil negara memiliki tantangan untuk memastikan uang pensiun disalurkan secara tepat. Pada pembayaran pensiun untuk kelompok janda/duda masih ditemukan ketidaktepatan pembayaran karena status pensiun janda/duda yang tidak teridentifikasi seperti telah menikah kembali.
Penelitian ini bertujuan membentuk model prediksi status pensiun janda/duda yang memiliki potensi menikah kembali. Proses prediksi status pensiun janda/duda menggunakan teknik data mining klasifikasi dengan menggunakan data demografi, sosial ekonomi peserta pensiun dan data transaksi proses pengambilan pensiun pada kelompok pensiun janda/duda. Sebagai perbandingan digunakan 3 algoritma klasifikasi yaitu Decision Tree, Naïve Bayes dan Support Vector Machine.
Beberapa atribut yang berpengaruh dalam penelitian ini yaitu jenis kelamin, usia, usia pernikahan sebelumnya, usia status janda/duda, dan kode pengambilan pensiun selama 3 bulan terakhir. Model yang terbentuk memberi wawasan bahwa pensiun duda dan semakin muda usia pernikahan, usia peserta serta usia status janda/duda memiliki potensi yang tinggi untuk menikah kembali. Hasil penelitian menunjukkan algoritma Support Vector Machine memiliki kinerja yang paling baik dengan tingkat akurasi sebesar 89,23%.

Pension is a guarantee of old age and appreciation for the services of state civil servants who have devoted themselves to the state. PT Taspen (Persero) as a state-owned company given the task of managing the social insurance of the state civil servants has a challenge to ensure pension money is distributed appropriately. The pension payments for the widows/widowers were still found to be overdue because the pension for widows/widowers who had remarried was not identified. This study aims to predict changes in the pension status of widows/widowers who have the potential to remarry.
This study aims to form a prediction model for the pension status of widows/widowers who have the potential to remarry. The process of predicting the pension status of widows/widowers uses classification data mining techniques using demographic, socio-economic data of pension participants and data on pension retrieval processes in the widow/widower pension group. As a comparison, 3 classification algorithms are used, Decision Tree, Naïve Bayes and Support Vector Machine.
Some of the influential attributes in this study are gender, age, age of previous marriage, age of widow/widower status, and retirement retirement code for the last 3 months. The model that is formed provides an insight that the retirement of the widower and/or the younger the age of marriage, the age of the participants and the age of the widow/widower status have a high potential for remarriage. The results showed that the Support Vector Machine algorithm has the best performance with an accuracy rate of 89.23%.
"
Depok: Fakultas Ilmu Kompter Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>