Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 104407 dokumen yang sesuai dengan query
cover
Lukas Hansel Briliano
"Distribusi Burr Tipe XII atau yang biasa dikenal dengan distribusi Burr merupakan salah satu dari dua belas tipe distribusi kontinu dalam sistem Burr. Distribusi Burr mempunyai karakteristik menceng kanan dan mempunyai tail yang tebal. Distribusi Burr dapat diterapkan dalam berbagai masalah survival. Untuk mempelajari lebih lanjut, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi Burr pada data tersensor kanan dengan metode Bayes. Prosedur penaksiran adalah dengan menentukan distribusi prior yang digunakan, yaitu conjugate prior, pembentukan fungsi likelihood untuk data tersensor kanan dan pembentukan distribusi posterior. Penaksir Bayes didapatkan dengan cara meminimumkan fungsi risiko posterior berdasarkan fungsi loss. Fungsi loss yang digunakan adalah Square Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Setelah didapatkan penaksir Bayes, dilakukan simulasi data untuk membandingkan keefektifan taksiran parameter dari kedua fungsi loss menurut Mean Square Error (MSE). Yang dimaksud penaksir yang efektif adalah penaksir yang mempunyai MSE lebih kecil. Selain itu dilihat juga pengaruh intensitas tersensor pada kedua fungsi loss menurut MSE. Berdasarkan hasil simulasi, penaksir Bayes dengan PLF lebih efektif daripada SELF dan semakin besar intensitas tersensor maka MSE yang dihasilkan semakin besar untuk kedua fungsi loss.

Burr Type XII distribution is known as Burr distribution, is one of the twelve types continous distribution on Burr system. Burr distribution is heavy-tailed and right-skewed. Burr distribution has an important role in survival analysis. To learn more, parameter estimation is needed. This study will explain about parameter estimation of Burr distribution for right censored data with Bayes method. Procedure for estimating parameter are, determine which prior distribution to use, that is conjugate prior, likelihood function construction for right censored data and calculation of posterior distribution. Bayes estimator is obtained by minimize posterior risk function based on loss function. This study will use Square Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation will be done to compare the effectiveness of Bayes estimator with both loss function according to Mean Square Error (MSE). What is meant by effective estimator is it has smaller MSE. Besides, this study is also explained the effect of the censored intensity according to MSE. Based on simulation results, Bayes estimator with PLF is more effective than SELF and greater censored intensity, greater MSE produced, for both loss function."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahajeng Ika Desyana Putri
"Analisis survival membutuhkan data survival yang terdiri dari waktu survival sekumpulan objek. Data survival dapat berbentuk data lengkap maupun tersensor. Namun data survival biasanya merupakan data tersensor. Salah satu data tersensor yang sering digunakan adalah data tersensor kanan tipe II yaitu merupakan data waktu kejadian dimana pengamatan dihentikan setelah diperoleh r objek pertama yang mengalami kejadian dari n objek yang diuji. Dilakukan pengamatan data survival tersensor kanan tipe II diperoleh grafik fungsi survival, fungsi survival serta fungsi kepadatan probabilitas yang merepresentasikan data tersebut. Fungsi kepadatan probabilitas data tersebut merupakan fungsi dari sebuah variabel random berdistribusi Rayleigh. Karena parameter tidak diketahui selanjutnya dilakukan penaksiran parameter.
Dalam skripsi ini dicari penaksir parameter distribusi Rayleigh pada data survival tersensor kanan tipe II dengan metode Bayes menggunakan dua fungsi loss yaitu Square Error Loss Function SELF dan Precautionary Loss Function PLF. Selanjutnya dilihat sifat bias dari penaksir parameter tersebut. Kemudian membandingkan hasil taksiran parameter dari kedua fungsi loss berdasarkan Mean Square Error MSE yang dihasilkan melalui simulasi data. Misalkan adalah parameter yang akan ditaksir, untuk diperoleh PLF memberikan hasil taksiran yang baik dan untuk diperoleh SELF memberikan hasil taksiran yang baik. Taksiran dikatakan baik apabila nilai MSE yang dihasilkan semakin kecil.

The survival analysis requires survival data consisting of survival time of a set of objects. Survival data can be either complete or censored data. However, survival data is usually censored data. One of the censored data that is then used is the right type censored data type II that is the time data of the events used to find the objects that exist. Recurrence of right type categorized survival data is obtained by graph of survival function, survival function and probability function which represents the data. The probability data relation function is a randomly distributed Rayleigh variable. Because the parameter is unknown, parameter estimation is performed.
In this thesis is searched the estimator of Rayleigh distribution parameter on the right type categorized survival data type II with Bayes method using two loss function that is Square Error Loss Function SELF and Precautionary Loss Function PLF. A bias viewpoint of the estimator 39s parameter. Then compare the parameter estimation results of the second function based on Mean Square Error MSE generated through data simulation. Let be the parameter to be estimated, for le 1 obtaining the PLF gives good estimates and for 1 the SELF result gives a good estimation result. The estimate that the resulting MSE values is getting smaller.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mochamad Ivan Janitra Rama
"Distribusi Weibull digunakan untuk menyelesaikan masalah-masalah yang menyangkut lama waktu suatu objek yang mampu bertahan hingga akhirnya objek tersebut tidak berfungsi (dengan kata lain rusak atau mati). Distribusi Weibull merupakan salah satu solusi untuk masalah fleksibilitas yang tidak dimiliki oleh distribusi Exponensial, yaitu hanya memiliki bentuk fungsi hazard yang konstan. Dalam melakukan inferensi dari kasus yang dimodelkan dengan distribusi Weibull, perlu dilakukan penaksiran terhadap parameternya. Distribusi Weibull dua parameter memiliki parameter skala dan parameter shape. Pada skripsi ini, akan dilakukan penaksiran parameter skala dari distribusi Weibull pada data terpancung kiri dan tersensor kanan dengan asumsi bahwa parameter shape diketahui menggunakan metode Bayesian. Prosedur dalam penaksiran parameter meliputi penentuan distribusi prior, fungsi dan distribusi posterior. Kemudian penaksir titik Bayes diperoleh dengan meminimumkan ekspektasi dari fungsi. Fungsi yang digunakan adalah Squared Error Loss Functio (SELF) dan Precautionary Loss Function (PLF). Kemudian dilakukan simulasi data untuk membandingkan nilai Mean Squared Error (MSE) dari taksiran parameter skala menggunakan fungsi. Hasil simulasi menunjukan bahwa taksiran parameter menggunakan fungsi memiliki nilai MSE yang lebih kecil untuk parameter skala lebih kecil atau sama dengan satu sedangkan taksiran parameter menggunakan fungsi PLF memiliki nilai MSE yang lebih kecil untuk parameter skala lebih besar daripada satu.

Weibull distribution is used to solve problems that involve the length of time an object is able to survive until the object is not function (in other words damaged or dead). Weibull distribution is one of many solutions to the flexibility problem that is not owned by an Exponential distribution, which only has the form of a constant hazard function. In making inferences from cases modeled with the Weibull distribution, it is necessary to estimate the parameters. The two-parameter Weibull distribution has a scale parameter and a shape parameter. In this thesis, the scale parameter of the Weibull distribution will be estimated on left truncated and right censored data assuming that the shape parameter are known using Bayesian method. The procedure in parameter estimation includes the determination of the prior distribution, the likelihood function and the posterior distribution. Then the point estimator of the scale parameter is obtained by minimizing the expectation of loss function. The loss function used in this thesis are Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). Data simulation is done to compare the value of Mean Squared Error (MSE) from the estimated parameters using SELF and PLF. The simulation result shows that the estimated parameter using SELF has a smaller MSE value for scale parameter below or equal one while the estimated parameter using PLF has a smaller MSE value for scale parameter above one."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Margaretha
"Distribusi Exponentiated Exponential (EE) adalah pengembangan dari distribusi Exponential dengan cara menambahkan sebuah parameter bentuk alpha. Distribusi ini digunakan untuk mengatasi masalah ketidakfleksibilitas dari distribusi Exponential. Untuk melakukan inferensi mengenai permasalahan yang dimodelkan dengan distribusi EE, perlu dilakukan penaksiran parameter. Pada skripsi ini akan dibahas mengenai penaksiran parameter distribusi dari distribusi Exponentiated Exponential pada data tersensor kiri menggunakan metode Bayesian. Prosedur penaksiran meliputi penentuan distribusi prior yaitu digunakan distribusi prior konjugat, pembentukan fungsi likelihood dari data tersensor kiri, dan pembentukan distribusi posterior. Penaksir Bayes kemudian diperoleh dengan cara meminimumkan risiko posterior berdasarkan fungsi loss Squared Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Kemudian setelah diperoleh perumusan penaksir Bayes, simulasi data dilakukan untuk membandingkan hasil taksiran parameter menggunakan fungsi loss SELF dan PLF yang dilihat dari nilai Mean Square Error (MSE) yang dihasilkan. Fungsi loss dikatakan lebih efektif digunakan dalam merumuskan penaksir Bayes apabila penaksir Bayes yang diperoleh menghasilkan nilai MSE yang lebih kecil. Berdasarkan hasil simulasi, fungsi loss PLF lebih efektif digunakan untuk alpha≤1, sedangkan fungsi loss SELF lebih efektif digunakan untuk alpha>1.

Exponentiated Exponential (EE) distribution is the development of Exponential Distribution by adding alpha as a shape parameter. This distribution can solve unflexibility issue in Exponential distribution. In order to make inferences about any cases modeled with EE distribution, parameter estimation is required. This thesis will discuss about parameter estimation of Exponentiated Exponential distribution for left censored data using Bayesian method. Parameter estimation procedure are selection of prior distribution which is conjugate prior, likelihood construction for left censored data, and then forming posterior distribution. Bayes estimator can be obtained by minimize posterior risk based on Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). After Bayes estimator is obtained, simulation is done to compare the results of Bayes estimator using SELF and PLF which are seen from the result of Mean Square Error (MSE). Loss function is said to be more effective to obtain Bayes estimator if the resulting Bayes estimator yield smaller MSE. Based on simulation, PLF more effective for alpha ≤ 1, while SELF more effective for alpha>1."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldila Fitrilia
"ABSTRAK
Analisis survival merupakan analisis statistika yang digunakan untuk menyelidiki waktu tahan hidup suatu benda atau individu pada keadaan tertentu. Dalam melakukan analisis survival dibutuhkan data survival yang meliputi waktu survival dan status waktu survival dari objek yang diteliti. Data survival yang diperoleh dapat berupa data lengkap atau data tidak lengkap. Data tidak lengkap data tersensor dapat berupa data tersensor kanan, kiri, atau interval. Data tersensor kanan dapat berupa data tersensor kanan tipe I atau data tersensor kanan tipe II. Dalam penelitian ini akan digunakan data tersensor kanan tipe II. Fungsi survival yang akan digunakan adalah fungsi survival dari distribusi Lomax. Distribusi Lomax memiliki dua paremeter, yaitu parameter bentuk dan parameter skala. Dalam penelitian ini, parameter yang akan ditaksir adalah parameter bentuk dengan asumsi parameter skala telah diketahui. Metode yang digunakan dalam penelitian ini adalah metode Bayes. Penelitian ini akan menggunakan prior Gamma sebagai distribusi conjugate prior dan fungsi Loss yang akan digunakan dalam penelitian ini adalah balanced squared error loss function BSELF .

ABSTRACT
Survival analysis is a statistical analysis used to investigate the life time of an object or an individual in a special case. In survival analysis, survival data is needed which includes the survival time and status of the survival time of the object under study. The survival data obtained can be either complete data or incomplete data. Incomplete data censored data can be either right, left, or interval censored data. The right censored data can be either right censored data type I or type II. In this study will be used the right censored data type II. The survival function to be used is the survival function of the Lomax distribution. The Lomax distribution has two parameters, that is the shape parameter and the scale parameter. In this study, the parameter will be estimate is the shape parameter with the assumption of scale parameters has been known. The method used in this study is Bayes method. This study will use prior Gamma as conjugate prior distribution and Loss function will be used in this study is balanced squared error loss function BSELF."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nafia Aryuna
"Tugas akhir ini membahas penaksiran parameter 0 (probabilitas sukses) pada m distribusi binmial, dimana ada keterkaitan antar parameter 0 pada masing-masing populasi. metode penaksiran yang digunakan adalah metode Bayes. pada metode ini, prosedur yang dilakukan meliputi transformasi parameter 0 ke bentuk logit yaitu a, penentuan prior dan likelihood, pembentukan posterior, modifikasi likelihood, hingga akhirnya diperoleh m taksiran dari a yang akan digunakan untuk menaksir 0 pada tiap populasi. hasil yang diperoleh diaplikasikan pada penaksiran proporsi jumlah perempuan di 10 kursus pada suatu lembaga"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S27843
UI - Skripsi Open  Universitas Indonesia Library
cover
Sisca Agnessia
"Dalam Penelitian ini akan dicari taksiran mean stratum pada sampling acak stratifikasi. Pada sampling acak stratifikasi, seringkali hanya tersedia beberapa pengamatan pada masing-masing strata. Kecilnya ukuran sampel akan menyebabkan penaksir langsung dari mean stratum menjadi kurang tepat. Metode alternatif yang dapat digunakan untuk menaksir mean dari stratum adalah dengan menggunakan metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran mean stratum pada sampling acak stratifikasi dengan cara menggabungkan informasi awal atau informasi yang telah tersedia sebelumnya tentang parameter yang akan ditaksir dengan informasi dari data sampel. Informasi awal disebut juga informasi prior. Penggabungan dari informasi prior dan informasi dari data akan menghasilkan informasi posterior. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior diestimasi dari data.

In this research will find the estimated stratum mean in stratified random sampling. In the stratified random sampling, often only available a few observations in each strata. The small sample size would cause a direct estimator of the mean stratum becomes less precise. Alternative methods that can be used to estimate the mean of the stratum is to use the Empirical Bayes method. Empirical Bayes methods used to find the estimated mean stratum in stratified random sampling by combining the initial information or information that has been available previously on the parameters to be estimated with information from the data sample. Preliminary information also known as prior information. The incorporation of prior information and information from the data will result in posterior information. In the Empirical Bayes method, prior information is not available so the information estimated from prior data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45105
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Rahman Hakim
"ABSTRAK
Distribusi Burr adalah distribusi Burr Tipe XII yang merupakan salah satu dari dua belas tipe distribusi kontinu dalam sistem Burr. Distribusi Burr mempunyai peran penting dalam berbagai bidang ilmu, antara lain dalam analisis reliabilitas, life testing, analisis survival, aktuaria, ekonomi, kehutanan, hidrologi, dan meteorologi. Distribusi Burr merupakan distribusi yang menceng kanan dan mempunyai tail yang tebal. Pembentukan dan karakteristik-karakteristik dari distribusi ini dibahas. Karakteristik-karakteristik yang dibahas meliputi fungsi distribusi, fungsi kepadatan peluang, fungsi survival, hazard rate, modus, median, momen, mean, variansi, koefisien skewness, dan koefisien kurtosis. Kedua parameter yang dimiliki distribusi Burr, yaitu k dan c, merupakan parameter-parameter shape, sehingga fungsi kepadatan peluangnya dapat berupa fungsi turun atau berupa fungsi unimodal. Selain itu, hazard rate-nya dapat berupa fungsi turun atau berbentuk upside-down bathtub. Dengan menggunakan metode maximum likelihood, dicari taksiran titik untuk parameter k dan c. Namun, taksiran tersebut tidak dapat dihitung secara analitik, sehingga diperlukan perhitungan secara numerik. Kemudian, jika diasumsikan parameter c diketahui, dicari penaksir titik terbaik, yaitu penaksir yang takbias, mempunyai variansi minimum, dan konsisten, untuk parameter k. Data lama waktu serat Kevlar sampai putus digunakan sebagai ilustrasi.
"
"
"ABSTRACT
"
Burr distribution is Burr Type XII distribution which is one of twelve types of continuous distribution in Burr system. Burr distribution has an important role in various fields of science, such as in reliability analysis, life testing, survival analysis, actuarial science, economic, forestry, hydrology, and meteorology. Burr distribution is a right skewed and heavy tailed distribution. The formation and characteristics of this distribution are discussed. The characteristics discussed include distribution function, probability density function, survival function, hazard rate, mode, median, moments, mean, variance, coefficient of skewness, and coefficient of kurtosis. Two parameters of Burr distribution, i.e. k and c, are shape parameters, so its probability density function can be either decreasing or unimodal. In addition, its hazard rate can be either decreasing or upside down bathtub shaped. By using maximum likelihood method, point estimates for parameters k and c are found. However, these estimates cannot be calculated analytically, so numerical calculations are required. Then, if it is assumed that parameter c is known, best point estimator, i.e. estimator that are unbiased minimum variance and consistent, for parameter k is found. The data representing the stress rupture life of Kevlar strands are used as an illustration."
2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Fitriyani
"Berdasarkan UU RI no.7 tahun 1996, ketahanan pangan adalah kondisi terpenuhinya pangan bagi rumah tangga yang tercermin dari tersedianya pangan yang cukup, baik jumlah maupun mutunya, aman, merata dan terjangkau. Jika kondisi ini tidak terpenuhi maka akan terjadi kerawanan pangan. Dalam Penelitian ini akan dicari taksiran proporsi terjadinya rawan pangan pada kecamatan di kabupaten Bondowoso. Dalam mencari proporsi di tingkat kecamatan digunakan Small Area Estimation (SAE). Small Area Estimation merupakan suatu teknik statistika untuk menduga parameter-parameter subpopulasi yang ukuran sampelnya kecil. Teknik penaksiran ini memanfaatkan data dari domain besar (seperti sensus, survey) untuk menaksir parameter yang menjadi perhatian domain yang lebih kecil. Salah satu metode yang digunakan dalam Small Area Estimation adalah metode Empirical Bayes. Metode Empirical Bayes digunakan untuk mencari taksiran parameter pada small area dengan cara menggunakan informasi dari direct survey estimator dan dari variabel pendukung yang tersedia di setiap small area. Dalam metode Empirical Bayes, informasi prior tidak tersedia sehingga informasi prior dapat diestimasi dari sampel. Untuk mengukur seberapa baik taksiran parameter yang diperoleh digunakan Mean Square Error (MSE). Dalam penelitian ini akan ditunjukkan bahwa MSE dari penaksir EB akan lebih kecil dibandingkan dengan MSE dari penaksir langsung."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1990
S27321
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>