Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 180622 dokumen yang sesuai dengan query
cover
Alimah Sekarningrum
"Indonesia diyakini memiliki potensi energi panas bumi sebesar 23.965 MW (Megawatt) atau setara dengan 20,28% dari potensi panas bumi dunia. Kondisi pemanfaatan panas bumi di Indonesia saat ini yaitu kapasitas terpasang sebesar 2.130,7 MW. Pengembangan panas bumi di Indonesia menemui banyak tantangan, dibuktikan salah satunya oleh pemanfaatannya yang rendah walaupun memiliki cadangan terbesar kedua di dunia. Pengembang panas bumi percaya bahwa salah satu faktor utama yang menghambat pengembangan panas bumi adalah tingginya risiko hulu. Salah satu faktor yang menghambat pengembangan panas bumi yaitu yang akan dibahas dalam penelitian ini adalah keterbatasan akses pada data pengeboran panas bumi menjadi kendala utama bagi setiap engineer atau peneliti pengeboran di Indonesia yang berupaya mencari cara untuk mengoptimalkan biaya pengeboran panas bumi. Dahulu biaya sumur di Indonesia jarang dipublikasikan, sehingga sulit dan tidak cukup data untuk dapat mengevaluasi biaya sumur hingga keyakinan statistik yang masuk akal. Perusahaan pengembang panas bumi di Indonesia tidak termotivasi untuk berbagi lesson learned dan best practice dari proyek pengeboran panas bumi ke publik, mengakibatkan kurangnya pengembangan terhadap aset proses organisasi yang dijadikan benchmarking untuk mengoptimalkan biaya eksplorasi. Dengan melakukan penilaian terhadap tingkat kematangan aset proses organisasi manajemen biaya proyek eksplorasi panas bumi diharapkan dapat mengetahui sudah sampai di mana tingkat kematangan saat ini dan diharapkan dapat memberikan strategi untuk dapat mengembangkan aset proses organisasi dalam manajemen biaya agar meningkatkan kesuksesan proyek. Penelitian ini dilakukan sebagai wujud pengembangan aset proses organisasi terhadap perencanaan biaya yang dapat dijadikan sebagai lesson learned berupa prosedur untuk perencanaan biaya proyek pengeboran industri panas bumi di Indonesia dan selanjutnya untuk meningkatkan keberhasilan pembangunan pembangkit listrik tenaga panas bumi di Indonesia.

Indonesia is believed to have geothermal energy potential of 23,965 MW (Megawatt) or equivalent to 20.28% of the world's geothermal potential. The current condition of geothermal utilization in Indonesia, in the form of installed capacity of geothermal power plants, is about 2,130.7 MW. Utilization of geothermal development in Indonesia faces many challenges, one of which is proven by its low utilization despite having the second largest reserves in the world. Geothermal developers believe that one of the main factors hindering geothermal development is the high upstream risk. One of the factors that hinder geothermal development, which will be discussed in this study, is the limited access to geothermal drilling data, which is a major obstacle for every drilling engineer or researcher in Indonesia who is trying to find ways to optimize geothermal drilling costs. In the past, well costs in Indonesia were rarely published, making it difficult and insufficient data to evaluate well costs to reasonable statistical confidence. Furthermore, geothermal development companies in Indonesia are not motivated to share lessons learned and best practices from geothermal drilling projects to the public, resulting in a lack of development of organizational process assets that are used as benchmarks to optimize exploration costs. By assessing the maturity level of project cost management's organizational process assets in geothermal exploration projects, it is expected to find out the current maturity level and provide a strategy to develop organizational process assets in project cost management in order to increase project success. This research was conducted as a form of developing organizational process assets towards cost planning that can be used as lessons learned in the form of procedures for cost planning for geothermal drilling projects in Indonesia and further to increase the success of geothermal power plant development in Indonesia."
Jakarta: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakhrian Fitrianto
"Energi listrik merupakan energi yang sudah tidak bisa dipisahkan dari kehidupan manusia. Kebutuhan energi listrik akan terus meningkat seiring dengan perkembangan zaman. Dalam pembangkitan energi listrik dibutuhkan pengonversian energi lain menjadi energi listrik dimana untuk membangkitkan energi listrik dibutuhkan sumber daya alam seperti batu bara. Batu bara dipilih karena selain harganya murah, pembangkitnya juga memiliki efisiensi yang cukup tinggi namun berdampak pada lingkungan. Selain itu seiring dengan pertumbuhan beban, biaya produksi tenaga listrik juga semakin meningkat. Oleh sebab itu, dibutuhkan optimasi biaya operasi pembangkit agar didapatkan pembebanan yang optimal sehingga biaya yang dikeluarkan seefisien mungkin dan harga listrik menjadi tidak terlalu mahal. Pada perencanaan pembebanan sebenarnya, biaya operasi pembangkit dalam satu hari yang dikeluarkan sebesar Rp 18.384.345.566 dengan biaya bahan bakar sebesar Rp 561,118/kWH. Sedangkan dengan optimasi biaya operasi pembangkit dengan menggunakan metode lagrange, didapat biaya operasi pembangkit dalam satu hari sebesar Rp 18.350.617.781 dan biaya bahan bakar sebesar Rp 560,068/kWH. Dengan melakukan optimasi biaya operasi pembangkit dengan metode lagrange, pengeluaran biaya operasi pembangkit dapat dihemat sebesar Rp 33.727.785 dan biaya bahan bakar sebesar Rp 1,05/kWH.

Nowadays, Electricity is one of the most important energy for human being which cannot be separated from the human life. The needs of electricity is increasing by the time goes. Another form of energy should be converted to produce the electricity and a coal is needed to produce the electricity as the fuel for the power plant. Coal is chosen as the fuel because it has low cost and high eficiency but has a bad impact for the environment. As the load grows, both the cost of electricity production and needs of the natural resoursces is increasing too. Though, the optimization of power plant production cost is needed to obtain optimal loading each power plant and get the efficient cost so the elctricity prices turn to be lower than before. In the real plan of power plant loading, the production cost is Rp Rp 18.384.345.566 a day and the fuel cost is Rp 561,118 kWH. On the other hand, the production cost with lagrange method opimization is Rp 18.350.617.781 a day and the fuel cost is Rp 560,068 kWH. Using the optimalization of electricity production cost with lagrange method Rp 33.727.785 has saved from the real plan planning and also save Rp 1,05 kWH in the fuel cost."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Resha Rafizqi Bramasta
"ABSTRAK
Pembangkit listrik tenaga panas bumi adalah sumber energi bersih terbarukan dengan potensi besar yang dimiliki Indonesia. Sistem deteksi kesalahan manual pada mesin kritis adalah salah satu masalah dalam pengoperasian pembangkit listrik tenaga panas bumi di Indonesia. Kesalahan rentan dalam menentukan kondisi mesin dan keterlambatan dalam mengetahui peringatan adalah dua masalah utama yang muncul. Penerapan algoritma pembelajaran mesin dalam membuat model deteksi kesalahan telah digunakan di berbagai industri dan objek. Penelitian ini adalah penerapan algoritma pembelajaran mesin untuk membuat model klasifikasi deteksi kesalahan pada mesin kritis pembangkit listrik tenaga panas bumi. Algoritma yang digunakan adalah classifier dasar dan ensemble classifier untuk membandingkan algoritma mana yang menghasilkan indikator klasifikasi terbaik. Penelitian ini dapat memberikan wawasan tentang industri pembangkit listrik tenaga panas bumi di Indonesia untuk mengatasi sistem deteksi kesalahan yang ada dengan memanfaatkan data sensor menggunakan algoritma pembelajaran mesin.

ABSTRACT
Geothermal power plants are a renewable clean energy source with great potential that Indonesia has. The manual fault detection system at the critical machine is one of the problems in the operation of geothermal power plants in Indonesia. Vulnerable errors in determining engine conditions and delays in knowing alerts are two major problems that arise. The application of machine learning algorithms in making fault detection models has been used in various industries and objects. This research is the application of machine learning algorithms to create fault detection classification models on critical engines of geothermal power plants. The algorithm used is the basic classifier and ensemble classifier to compare which algorithms produce the best classification indicators of classifications. This research can provide insight into the geothermal power plant industry in Indonesia to overcome existing fault detection system by utilizing sensor data using machine learning algorithm."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariono Ifandry
"Indonesia saat ini memiliki potensi panas bumi mencapai 29.038MW yang tersebar di 276 lokasi. Namun ironisnya, dengan potensi sebesar itu, hanya sekitar 4% potensi yang sudah dimanfaatkan. Saat ini Indonesia menempati posisi 3 (tiga) pengembangan PLTP di seluruh dunia dibawah Amerika Serikat dan Filipina. Hal yang perlu diperhatikan adalah walau potensi panas bumi Indonesia sangat besar, pengembangan PLTP menemui beberapa kendala. Dari sisi pentarifan, harga dasar listrik masih rendah serta resiko investor terutama kegagalan ketika eksplorasi cukup besar sehingga kurang mendorong berinvestasi. Sehingga diperlukan analisa terhadap skema bisnis pengembangan panas bumi di Indonesia, serta faktor-faktor pendukungnya.
Tesis ini menganalisa skema bisnis pengembangan panas bumi di Indonesia serta penentuan harga listrik panas bumi di Indonesia dalam kaitan penerapan mekanisme risk sharing sebagaimana yang diterapkan oleh Filipina dan Selandia Baru dalam pengembangan panas bumi. Teknik yang digunakan adalah teknik Quantitative Strategic Planning Matrix (QSPM) sebagai analisa secara kuantitatif guna mengukur kelebihan, kekurangan, peluang serta ancaman dari masing-masing strategi alternatif terhadap skema bisnis pengembangan panas bumi di Indonesia.
Hasil penelitian menunjukkan bahwa dari 3 (tiga) strategi alternatif yang dirumuskan berdasarkan Matriks SWOT, maka strategi alternatif - 3 yang dipilih untuk diterapkan di Indonesia dengan nilai Sum Total Attractive Score (STAS) dari faktor-faktor internal utama sebesar 3,69 dan faktor-faktor eksternal utama sebesar 3,86, yaitu mempersempit kesenjangan harga listrik panas bumi dengan melakukan mitigasi resiko serta menekan tingkat resiko proyek dimana pelaksanaan tender dilakukan setelah eksplorasi, dengan demikian pengembang dapat menentukan teknologi, skema peralatan, dan biaya investasi dengan lebih akurat (Site Specific). Dalam strategi alternatif - 3, proses tender dilakukan oleh PLN atau BUMN yang ditugaskan secara khusus (Badan Pelaksana Panas Bumi) sehingga mitigasi resiko eskplorasi tergabung dalam satu badan yang diharapkan dapat menurunkan harga listrik panas bumi serta mendukung iklim investasi panas bumi di Indonesia.

Indonesia currently has geothermal potential reaches 29.038MW spread over 276 locations. But ironically, with the potential for it, only about 4% of the potential that has been utilized. Indonesia currently occupies the position of 3 (three) the development of geothermal power plants around the world under the United States and the Philippines. The thing to note is that despite Indonesia's geothermal potential is enormous, the development of geothermal power plants to meet some constraints. Of the tariff, the price of electricity is low and investors' risk of failure, especially when exploring large enough to invest less encouraging. So that the required analysis of the business scheme of geothermal development in Indonesia, as well as supporting factors.
This Tesis analyze the business scheme of geothermal development in Indonesia as well as the determination of the electricity price of geothermal in Indonesia in relation to the application of risk sharing mechanism as implemented by the Philippines and New Zealand in the development of geothermal energy. The technique used is the technique of Quantitative Strategic Planning Matrix (QSPM) as a quantitative analysis to measure the strengths, weaknesses, opportunities and threats of each alternative strategy to the business schemes of geothermal development in Indonesia.
The results showed that of 3 (three) alternative strategies are formulated based on the SWOT matrix, then the alternative strategy - 3 selected to be implemented in Indonesia with Total Attractive Score (TAS) of the major internal factors of 3.69 and external factors main of 3.86, which is narrowing the price gap of the geothermal power to mitigate risks and push the level of project risk which the tender after the implementation of exploration, so the developer can define the technology, equipment schemes, and investment costs with more accurate (Site Specific). In the alternative strategy - 3, the tender process conducted by PLN or BUMN which specifically assigned (Badan Pelaksana Panas Bumi) so that exploration risk mitigation incorporated in the same agency that is expected to lower the price of geothermal power and geothermal energy to support the investment climate in Indonesia.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T31813
UI - Tesis Open  Universitas Indonesia Library
cover
Marmelia Puja Dewi
"Panas bumi sangat penting bagi pengembangan sistem energi berkelanjutan di Indonesia. Negara ini memiliki keistimewaan berupa potensi cadangan panas bumi setara dengan 29 Gigawatt-listrik. Namun, memanen potensi sebesar itu bukanlah sesuatu yang mudah, karena proyek panas bumi bersifat padat modal, kompleks, dan peka terhadap ketidakpastian dan risiko—akibatnya, proyek panas bumi menjadi investasi yang kurang menarik. Selain itu, karena ketidakpastian yang mendalam, keputusan-keputusan sulit seringkali harus dibuat berkenaan dengan kelanjutan proyek panas bumi karena alasan keuangan. Langkah-langkah tata kelola tambahan, seperti pembiayaan berkelanjutan, diperlukan untuk memastikan kelangsungan proyek dalam jangka panjang. Dalam rangka berkontribusi mengatasi masalah tersebut, penelitian ini bertujuan mengembangkan sebuah model pembiayaan berkelanjutan bagi proyek panas bumi di Indonesia. Dalam penelitian ini, pembiayaan berkelanjutan diartikan sebagai skema pembiayaan yang atraktif dan robust—mampu memberikan kinerja finansial jangka panjang yang memuaskan secara konsisten pada berbagai skenario perubahan yang disebabkan oleh ketidakpastian dan risiko. Untuk keperluan tersebut, penelitian ini menggunakan pendekatan Analisis Kebijakan dan Analisis Keuangan yang dikombinasikan dengan metode Exploratory Modelling and Analysis (EMA). Secara khusus, penelitian ini menerapkan Exploratory System Dynamics Modelling and Analysis (ESDMA) sebagai paduan pemodelan Sistem Dinamis (System Dynamics) dan EMA, serta memperkenalkan penggunaan Exploratory Financial Modelling and Analysis (EFMA) sebagai kombinasi pemodelan finansial dengan Discounted Cash Flow (DCF) dan EMA. ESDMA digunakan untuk menganalisis kompleksitas proyek panas bumi dan mengeksplorasi alternatif kebijakan pembiayaan yang efektif dan kokoh atau robust di bawah kondisi ketidakpastian mendalam; sedangkan EFMA diterapkan untuk menganalisis kinerja keuangan proyek dan mengeksplorasi skema pembiayaan yang menarik dan kokoh atau robust di bawah kondisi ketidakpastian mendalam. Selanjutnya, luaran dari simulasi ESDMA dan EFMA diselaraskan untuk menghasilkan rumusan model pembiayaan berkelanjutan beserta alternatif strategi penerapannya untuk proyek panas bumi di Indonesia. Sebagai hasil penelitian, model pembiayaan yang diusulkan merupakan kombinasi feed-in tariff (FIT) dengan program derisking pemboran sumur eksplorasi. Kedua program ini harus berdampingan agar tingkat keekonomian tetap atraktif dan robust. Selain itu diperlukan mekanisme kordinasi kelembagaan yang tersentralisasi agar model ini dapat diimplementasikan.

Geothermal is vital for sustainable energy systems development in Indonesia. The country is privileged with estimated geothermal reserves equivalent to 29 Gigawatt- electric. However, harvesting such massive potential is precarious since geothermal projects are capital intensive, complex, and sensitive to uncertainty and risk—thus, the projects become a less attractive investment. Moreover, due to deep uncertainties, difficult decisions often have to be made regarding geothermal projects (dis)continuation for financial reasons. Additional governance measures, such as sustainable financing, are required to ensure the viability of the projects in the long run. As a contribution to address the concern above, this study aims to develop a sustainable financing model for geothermal projects in Indonesia. Herein, a sustainable financing model is defined as an alternative financing scheme that is attractive and robust—able to provide a consistently satisfying long-term financial performance in various scenarios of change due to uncertainty and risk. For this purpose, the study combines Policy Analysis and Financial Analysis approaches with Exploratory Modelling and Analysis (EMA). More specifically, the study employs Exploratory System Dynamics Modelling and Analysis (ESDMA) as a combination of System Dynamics modelling and EMA; and introduces the use of Exploratory Financial Modelling and Analysis (EFMA) as an integration of financial modelling with Discounted Cash Flow (DCF) and EMA. ESDMA is used to analyze the complexity of geothermal projects and to explore robust financing policies under deep uncertainty; while EFMA is used to analyze the project's financial performance and to explore attractive and robust financing schemes under deep uncertainty. Aligning the results from ESDMA and EFMA, a sustainable financing model for geothermal projects and its alternative implementation strategies are formulated. As a result, the proposed financing model is a combination of Feed In Tariff (FIT) with an exploration well drilling program that eliminates risk. These two programs must coexist so that the economic level remains attractive and robust. In addition, a centralized institutional coordination mechanism is needed so that this model can be implemented."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Situmorang, Susanto Berlin Manarua
"Penelitian ini berfokus pada analisis dari konstruksi Pembangkit Listrik Tenaga Panas Bumi di Wilayah Kerja Panas Bumi WKP Tulehu. Salah satu sumur yang telah diuji di WKP Tulehu memproduksi fluida panas bumi dengan karakteristik low-medium enthalpy 130-165oC, low wellhead pressure 300-700 kPa, dan low mass flow rate 16,67-25 kg/s, dimana karakteristik tersebut sangat sesuai untuk diutilisasi dengan tipe binary power plant. Pembangkit listrik binary secara umum terdiri atas dua tipe Organic Rankine Cycle,yang menggunakan hidrokarbon sebagai fluida kerja, dan Kalina Cycle System, yang menggunakan campuran ammonia-air sebagai fluida kerja. Penelitian ini akan berfokus pada optimasi multiobjektif terhadap tipe pembangkit listrik binary yang paling sesuai dengan kondisi fluida panas bumi tersebut. Objektif yang akan dimasukkan dalam optimasi ini adalah Exergy Destruction dan Purchased Equipment Cost. Hasil optimasi tersebut kemudian akan digunakan sebagai basis untuk kalkulasi estimasi biaya proyek pembangkit listrik yang dicanangkan. Dengan begitu akan diperoleh tipe pembangkit listrik binary yang paling sesuai untuk digunakan di WKP tersebut. Simulasi dan optimasi dilakukan dengan menggunakan Matlab dan Engineering Equation Solver EES .

This study focuses on simulation and optimization of the binary cycle power plant on Tulehu Geothermal Field. One of the tested well in the field produces geothermal fluid with characteristics such as low to medium temperature 130 165oC, low wellhead pressure 3-7 bar, and low mass flow rate 16,67 ndash 25 kg s, in which those characteristics are suitable for binary cycle power plant. Binary power plant can be categorized into two types, Organic Rankine Cycle, which uses hydrocarbon as its working fluid, and Rankine Cycle System, which uses ammonia water mixture as its working fluid. The study will mainly focuses on the optimization of the types of binary power plant with multiobjectives. Those objectives which will be included are Exergy Destruction and Purchased Equipment Cost. The results then will be used as basis for the estimation of the power plant project total cost. By using those method we will be able to find out the solution to which one of the types that have the best output for possible later use on the geothermal field. The simulation and optimization will be conducted by using Matlab and Engineering Equation Software EES."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwita Sulistyaningsih
"Sehubungan latar belakang dan kondisi Indonesia saat ini, diversifikasi energi sudah saatnya dilakukan dengan lebih intensif. Indonesia merupakan negara dengan sejumlah besar gunung api yang memiliki sumber daya energi panas bumi dalam jumlah melimpah. Pengembangan sumberdaya panas bumi memerlukan investasi yang cukup besar, sehingga pengembangannya relatif sangat lambat, namun demikian ia memiliki keunggulan yaitu emisi CO2 yang sangat rendah.
Protokol Kyoto disusun untuk menentukan target dan cara-cara penurunan konsentrasi Gas Rumah Kaca (GRK) dunia. Di dalam Protokol tersebut telah disepakati bahwa sebagai langkah awal stabilisasi konsentrasi GRK negara-negara maju akan menurunkan emisi GRK sedikitnya sebesar 5% dari tingkat emisi tahun 1990. Penurunan tersebut ditargetkan akan tercapai sekitar tahun 2008-2010. Target penurunan emisi tersebut bersifat mengikat (Legally Binding) bagi negara-negara maju. Negara-negara berkembang tidak memiliki obligasi untuk menurunkan emisinya.
Mekanisme Pembangunan Bersih atau Clean Development Mechanism (CDM) adalah mekanisme dalam Kyoto Protokol berupa kerangka multilateral yang memungkinkan negara maju melakukan investasi di negara berkembang untuk mencapai target penurunan emisinya. Negara berkembang berkepentingan dalam mencapai tujuan pembangunan berkelanjutan. Kerangka tersebut dirancang untuk memberikan aturan dasar bagi kegiatan proyek yang dapat menghasilkan pengurangan emisi yang disertifikasi (Certified Emission Reduction CER). Mekanisme ini merupakan partisipasi negara-negara berkembang untuk terlibat aktif dalam protokol ini.
Dari segi bisnis, pengesahan Protokol Kyoto akan menarik investasi baru melalui Mekanisme Pembangunan Bersih (Clean Development Mechanism/ CDM} dimana kegiatan investasi itu akan memberikan dana tambahan atau insentif sebagai kompensasi atas pembatalan emisi GRK karena proyek tersebut dilaksanakan pada sektor-sektor yang mampu menekan emisi atau meningkatkan penyerapan karbon. Oleh karena itu, bagaimana energi panas bumi dapat berkembang dalam kondisi lingkungan global ini.
Penelitian aplikasi mekanisme CDM pada PLTP Panasbumi ini melihat berapa besar insentif CDM tersebut dalam mendukung pengembangan proyek PLTP Panasbumi dari segi ekonomi serta tatanan kelembagaan yang ada pada sektor energi.
Tujuan penelitian ini adalah mendapatkan gambaran ekonomi proyek PLTP panasbumi dari insentif CDM yang didapatkan, yaitu dengan cara mendapatkan besar reduksi emisi CO2 PLTP Panasbumi terhadap baselinenya dan mendapatkan perhitungan ekonomi proyek PLTP tersebut, serta tatanan kelembagaannya saat ini.Penelitian ini diharapkan dapat memberikan informasi kontribusi insentif CDM pada PLTP Panasbumi untuk mendukung diversifikasi energi serta pembangunan berkelanjutan sebagai pertimbangan meratifikasi Protokol Kyoto.
Hipotesis dari penelitian ini adalah bahwa kontribusi insentif CDM mampu meningkatkan faktor ekonomi PLTP Panasbumi untuk mendukung perkembangan energi panas bumi sebagai salah satu mekanisme pengelolaan global perubahan iklim, namun tidak cukup besar untuk mempercepat pergembangan PLTP Panasbumi. Kelembagaan pemerintah, masyarakat dan swasta berperan dalam mekanisme CDM.
Penelitian ini merupakan penelitian non-eksperimental atau penelitian deskriptif-analitik dengan menggunakan metode survey dan ekspos fakto. Penelitian deskriptif merupakan penelitian untuk mengumpulkan informasi mengenai status gejala yang ada, pada saat penelitian dilakukan. Penelitian deskriptif tidak dimaksudkan untuk menguji hipotesis tertentu, tetapi hanya menggambarkan apa adanya tetang variabel-variabel, gejala atau keadaaan. Variabel yang satu tidak dihubungkan dengan variabel yang lain, tetapi ingin mengetahui keadaan masing-masing variabel secara lepas, pengumpulan data kualitatif (survey dan wawancara mendalam) dengan dilengkapi data kuantitatif sejumlah sampel dari populasi dalam suatu penelitian, akan saling melengkapi, memperluas ruang lingkup dan kedalaman studi atau kajian.
Berdasarkan hasil dari pembahasan data yang diperoleh dari penelitian ini, maka kesimpulan yang diperoleh adalah:
  1. Besar emisi gas CO2 PLTP Panasbumi diperhitungkan dari jumlah kandungan gas yang tidak terkondensasi (non-condensable gas) dalam sejumlah uap yang dikonsumsi untuk membangkitkan listrik 100 MW. Pada tahun 2003 sebanyak sekitar 23.894 ton gas CO2 setiap tahun diemisikan dari menara pendingin PLTP Panasbumi. Dibandingkan dengan pembangkit listrik untuk menghasilkan listrik yang sama, sistem Jawa-Bali mengemisikan gas CO2 sebanyak 722.365 ton. Dengan demikian PLTP Panasbumi mampu mereduksi sebanyak 698.471 gas CO2 setiap tahun untuk kapasitas 100 MW.
  2. Dengan berkembangnya pasar untuk perdagangan karbon yang telah dilakukan di Eropa saat ini, setiap ton CO2 dihargai antara 5 hingga 10 dollar Amerika. Dengan reduksi emisi CO2 setiap tahunnya, maka PLTP Panasbumi berpotensi untuk mendapatkan insentif CDM sebesar hampir sekitar 3,5 hingga 7,0 juta dollar Amerika setiap tahunnya, atau 100 hingga 200 juta dollar Amerika selama masa kontrak produksinya (30 tahun). Hal ini yang disebut sebagai Certified Emission Reduction (CER) dalam mekanisme Clean Development Mechanism (CDM) pada Kyoto Protokol. Insentif CDM ini mampu meningkatkan IRR 1,5% yaitu dari 15,3% menjadi 16,8% bila dibandingkan dengan tidak adanya CDM, serta meningkatkan NPV sebesar 15,9 juta dollar Amerika yaitu dari 56,8 juta dollar Amerika menjadi 72,7 juta dollar Amerika dengan asumsi pajak CDM sebesar 10%. Mengingat kondisi perpajakan yang berbeda dengan kontrak PLTP Panasbumi, maka pajak CDM tidak dimasukkan dalam perhitungan earning perusahaan, sehingga insentif CDM ini tidak cukup besar untuk dapat mempercepat perkembangan PLTP Panasbumi. Selain itu, jumlah insentif CDM tidak cukup signifikan dibandingkan dengan besar investasi yang harus ditanamkan, namun demikian CER tersebut cukup mampu untuk merangsang perkembangan panas bumi di Indonesia. CDM bila dilihat dari segi energi, mampu meningkatkan tingkat pengembalian bunga investasi proyek atau IRR sebesar 1.5%. Kontribusi ini relatif kecil ketika kepentingan komitmen atas penurunan GRK untuk menekan dampak perubahan iklim dunia terhadap mahluk hidup mulai dirasakan. Sehingga jenis energi yang rendah emisi, terbarukan serta memiliki efisiensi tinggi menjadi pilihan perkembangan diversifikasi energi dimasa mendatang.
  3. Kementerian Lingkungan Hidup yang merupakan focal point dari mekanisme CDM Kyoto Protokol sangat mendukung dan aktif mendorong terciptanya kelembagaan dan perangkat kesiapan implementasi CDM serta ratifikasi Kyoto Protokol. Tatanan kelembagaan CDM di sektor energi telah berkembang relatif lebih cepat.

Considering the current background and conditions of Indonesia it is already high time that diversification of energy should be applied more intensive. With it chain of several volcanic mountains Indonesia has enormous resources of geothermal energy. The development of these resources requires quite high investment, causing its relative slow development, although its superior very low CO2 emission.
The Kyoto protocol was formulated to stipulate the target and means of reducing the concentration of Greenhouse Gasses (GHG). The protocol stated the agreement that as a preliminary step developed countries should reduce their GHG concentration up to 5.2% of the emission level in 1990. This is targeted to be achieved at around 2008-2010. This emission reduction is legally binding for developed countries. Developing countries are not obligated to reduce their emission.
The Clean Development Mechanism (CDM) is a mechanism in the Kyoto Protocol, a multilateral framework providing the opportunity for developed countries to invest in developing countries to achieve their emission reduction. Developing countries have an interest in achieving their sustainable development. The framework was designed to provide the legal basic for project activities, which could result in a Certified Emission Reduction, CER. A mechanism for developing countries to be actively involved in this protocol.
From the business point of view, the ratification of the Kyoto Protocol should attract new investment through the Clean Development Mechanism, CDM, where the investment activity shall give additional funds or incentive as compensation for the reduction of GHG emission for such project is implemented in sectors reducing emission or improve carbon absorption. This is the reason why geothermal energy will be able to develop in the present global environmental condition.
The research of the CDM mechanism application in this Geothermal Power Station considers the amount of the CDM incentive in supporting the development of such project from its economic aspects and the existing institutional structures in the energy sector.
The objective of this research is to obtain an economic overview of the geothermal power station from the CDM incentive to be obtained that is by the amount of CO2 emission reduction of the geothermal PowerStation against its baseline and obtain the economic calculation of such project, also the institutional structure in the present energy sector.
This study is hoped to provide the CDM intensive contribution on the geothermal Power Station to support energy diversification and sustainable development as consideration to ratify the Kyoto Protocol.
The research hypothesis is that the CDM incentive is able to enhance the economy of the geothermal power station to support the development of geothermal energy as one of the global management mechanism of climatic change, but not powerful enough to accelerate the development of geothermal Power station. The government, community and private institutions also play a role in the CDM.
This research is a non-experimental research or an analytical-descriptive research by using survey methods and facts exposure. A descriptive research is a research to collect information on the status of existing symptoms, at the time of the research. Descriptive research is not intended to test any given hypothesis, only present the facts about variables, symptoms or situations. One variable is not connected to another, just to understand the respective variables independently, collecting qualitative data (in-depth survey and interview) completed by a number of quantitative data of the population, in a research it will supplement one another, extend the scope and depth of the study or research.
Based on the results of the data description obtained from this study, the following conclusion may be drawn:
  1. The amount of emission of the geothermal power station to raise 100 MW is calculated from the amount of vapor consumed and the non-condensed gas containing CO2 gas. 23,894 ton of CO2 gas is annually emitted from the cooling tower of the Geothermal Power Station. Compared to power stations to produce the same amount of electricity, the Java Bali network emits 722,365 ton of CO2 gas. Which mean that the geothermal power station will be able to reduce 698,471 ton of CO2 gas annually to raise 100 MW electricity. This is valued or called Certified Emission Reduction (CER) in the Clean Development Mechanism (CDM) of the Kyoto Protocol mechanism.
  2. With the development of markets for carbon trading presently carried out in Europe, the price of each unit ton of CO2 varies between 5 to 10 US dollars. With a reduction of 698,471 ton CO2 annually, the geothermal power station is potential to receive a CDM intensive of about 3.5 to 7.0 million US dollars annually, or 100 to 200 million US dollar during its production contract (30 years). The CDM incentive is able to increase IRR to 1.5 % which is from 15.3% to 16.8% compared to non-existence of CDM also increases NPV to 15.8 million from 56.8 to 72.7 Million. The insinuative is calculated in the company cash liquidity but not included in the company's earning, due to the difference in the tax condition with the geothermal power station. Besides, the CER provides enough incentive to the development of geothermal sources but will not be able to accelerate its development investment due to its riot significant amount compared to the huge amount of investment. CDM from energy sector overview, it is potential to increase 1.5 Internal Rate Ratio. This contribution relatively low when we compared with Greenhouse Gas reduction commitment to mitigate climate change impact in the world. Therefore, low emission energy technology, renewable energy which is have high efficiency become good choose alternatives in the future to support diversification energy development.
  3. The CDM institutional structure in the energy sector has developed relatively more rapid due to the fact that the CDM project is related to renewable energy, which is very low in emission such as geothermal and efficient energy (cogeneration etc.) The Ministry of Living Environment as the focal point of the CDM mechanism of the Kyoto Protocol support and actively boost the creation of institutions and means of implementing the CDM and ratification of the Kyoto Protocol.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2004
T11981
UI - Tesis Membership  Universitas Indonesia Library
cover
Bregas Pambudy Siswantra
"Akibat adanya pandemi Covid-19, permintaan energi mengalami penurunan, hal ini berlaku kepada permintaan minyak, batu bara, dan gas, tetapi tidak untuk energi baru terbarukan. Geothermal merupakan salah satu energi terbarukan yang memiliki potensi besar di Indonesia, yaitu sebesar 29.000 MW. Namun, pemanfaatannya di Indonesia masih kurang, yaitu hanya sekitar 7% dari total potensi yang dimiliki. Hal tersebut disebabkan oleh beberapa hal, yaitu biaya investasi yang tinggi disertai risiko yang tinggi juga. Oleh karena itu, dibutuhkan analisis risiko investasi untuk mengetahui kelayakan investasi Pembangkit Listrik Tenaga panas Bumi (PLTP) di Indonesia. Pada penelitian ini terdapat empat skema model bisnis yang penggunaanya terbagi menjadi Wilayah Indonesia satu dan Wilayah Indonesia dua. Berdasarkan perhitungan keekonomian yang melihat nilai NPV, IRR, PI, dan PBP terlihat bahwa hanya skema 2, skema 3, dan skema 4 yang layak digunakan dalam pengembangan listrik geothermal di Indonesia. Hasil perhitungan keekonomian didukung oleh hasil analisis risiko yang menggunakan metode Monte Carlo, terlihat bahwa penggunaan skema 2, skema 3, dan skema 4 memiliki nilai derajat keyakinan terhadap nilai NPV, IRR, PI, dan waktu PBP >50% sehingga skema-skema tersebut layak untuk dilakukan. Berdasarkan analisis sensitivitas terlihat bahwa harga jual listrik dan kapasitas pembangkit merupakan faktor yang paling berpengaruh dalam penelitian ini.

Due to Covid-19, energy demand has decreased, this applies to oil, coal and gas, but not for renewable energy. Geothermal is renewable energy that has potential in Indonesia, around 29,000 MW. However, the utilization still lacking, only about 7% of total potential. This is caused by several things, high investment costs accompanied by high risks. Therefore, investment risk analysis is needed to determine the feasibility of investing in Geothermal Power Plants in Indonesia. In this study, there are four business model schemes whose divided into Indonesian Region one and Indonesian Region two. Based on economic calculations that calculate NPV, IRR, PI, and PBP, it can be seen that only scheme 2, scheme 3, and scheme 4 are suitable for development of geothermal electricity in Indonesia. The results of the economic calculation are supported by risk analysis using the Monte Carlo method, it appears that scheme 2, scheme 3, and scheme 4 has a degree of certainty of the NPV, IRR, PI, and PBP greater than 50%. Based on the sensitivity analysis, it can be seen that the selling price of electricity and generating capacity are the most influential factors in this study."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohamad Ilman Hasya
"Seperti yang diketahui pemerintah Indonesia saat ini sedang menjalankan program 35000 watt, dimana dalam hal ini untuk memenuhi banyak permintaaan akan ketersediaan listrik yang ada di seluruh Indonesia. Karena sampai dengan saat ini berrdasarkan data yang ada jumlah perrmintaan akan listrik yang dibutuhkan masih melebihi jumlah pembangkit yang ada di seluruh Indonesia. Oleh karena itu pemerintah menjalankan program 35000 watt dengan harapan dapat memenuhi kebutuhan listrik yang diminta.
Dalam hal ini diperlukannya peran manajemen risiko dalam mengontrol pembangunan proyek EPC pembangkit tersebut. Dalam penelitian ini akan melihat risiko yang berpengaruh dalam pembangunan EPC pembangkit tersebut. Metode yang digunakan adalah deskriptif, kuisioner, serta validasi pakar yang kemudian data dari kuisioner akan diolah dengan perangkat lunak SPSS. Variabel yang digunakan dalam penelitian sebanyak 54 variabel risiko yang terjadi pada proses EPC.
Dalam penelitian ini didapatkan 9 variabel dominan yang berpengaruh pada pembangunan proyek EPC pembangkit yaitu 3 variabel dari tahap rekayasa, 2 variabel dari tahap pengadaan, dan 4 variabel pada tahap konstruksi serta mitigasi dalam mengatasi setiap risiko tersebut. Risiko yang didapat ternyata yang terbanyak masih berada pada tahap rekayasa dan konstruksi sehingga dibutuhkan pengontrolan yang lebih terhadap tahap tersebut untuk mencegah keterlambatan.

As of now Indonesia government are focusing on building on electricity program 35.000 MW, to provide and enlight across the country. Because as per current data Indonesia still have low supply to support all society with existing power plant. That is why this ongoing program which run by the goernment can fulfill needs of required electricity. In this case risk management have role to control EPC project of all power plant which currently being build.
In this research, it will elaborate the risk impact to the EPC power plant construction. Research method use are descriptive, qusionaire, and expert validation which align with questionaire that being processed used SPSS software. Variabel used in this research are 54 risk variabel that happen during EPC process.
Result by doing this action acquaire 9 dominant variabel impact to EPC project power plant which consist 3 on engineering process, 2 variabel in procurement level, and 4 in cosntruction level, include also mitigation action to comprehend those risk. Result showed that risk mostly occurs during engineering and contruction process which explain that needs more control on those process to avoid any delay.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47963
UI - Tesis Membership  Universitas Indonesia Library
cover
Ahmad Luthfi Fitris
"Fluida panas bumi dari pembangkit listrik tenaga panas bumi (PLTP) selalu disertai oleh gas yang tidak dapat dikondensasikan/Noncondensable gas (NCG). Gas-gas ini meningkatkan tekanan kondensor, berkontribusi terhadap backpressure pada turbin, dan mengurangi produksi daya pembangkit. Untuk menghilangkan NCG dari kondenser, PLTP membutuhkan utilisasi dan optimisasi Gas Removal System (GRS). PT. X menggunakan sistem dual ejector (SJE) untuk gas removal system (GRS). Karena berbagai kondisi uap, banyak motive steam yang digunakan dan tekanan kondenser meningkat. Hal ini menyebabkan penuruan produksi daya. Namun, pembangkit PT. X memiliki liquid ring vacuum pump (LRVP) yang dapat digunakan dengan dual ejector sebagai sistem hibrida (hybrid system). Pembahasan ini bertujuan untuk optimisasi GRS dengan tujuan peningkatan produksi listrik dan didasarkan pada analisis termodinamika dan Cycle Tempo 5.0.
Hasil menunjukkan bahwa hybrid system memiliki kinerja yang lebih tinggi daripada sistem dual ejector. Dengan mempertahankan tekanan kondenser yang sama pada 0,08 bar, PLTP dengan sistem dual ejector menghasilkan daya bersih sebesar 42,9 MW sedangkan PLTP dengan hyrbid system menghasilkan daya bersih sebesar 44,5 MW. Kesimpulannya, analisis termodinamika menunjukkan bahwa hybrid system lebih cocok untuk digunakan di PT. X demi peningkatan produksi daya.

Geothermal fluids of geothermal power plants (GPP) are always accompanied by non-condensable gases (NCG). These gases do not condense inside the condenser which will increase the condenser pressure, contribute to backpressure on the turbine, and thereby decreasing the power generation of the plant. In order to remove these NCG from the condenser, GPP would need to utilize and optimize Gas Removal System (GRS). Currently PT. X utilizes a dual ejector gas removal system (GRS). Due to various steam conditions, more motive steam is needed and the condensers pressure rises up. These problems will eventually lead to lower power production. However, the GPP possesses a liquid ring vacuum pump on standby which could be utilized with the ejector as a hybrid system. This study aims to optimize the gas removal system for an improved GPPs overall power production that is based on thermodynamic analysis and uses Cycle Tempo 5.0 for modeling and simulation.
The result shows that hybrid system has higher performance than the dual ejector system. By maintaining the same condenser pressure at 0.08 bar, the GPP with dual ejector system produces nett power of 42.9 MW while the GPP with hybrid system produces nett power of 44.5 MW. In conclusion, the thermodynamic analysis justifies that hybrid gas removal system is more suitable to be utilized in PT. X in order to gain higher power producion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>