Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 3 dokumen yang sesuai dengan query
cover
Hanifah Sulasri
Abstrak :
Graf G terdiri atas himpunan simpul V(G) dan himpunan busur E(G). Graf G dengan V(G)={v_1,v_2,v_3,…,v_n} dan E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} disebut sebagai graf lintasan yang dinotasikan sebagai P_n. Pelabelan graceful (disebut juga sebagai β-valuation) adalah pemetaan injektif dari himpunan simpul dari G ke himpunan bilangan bulat {0,1,…,|E(G)|} sedemikian sehingga jika untuk setiap busur 𝑢𝑣 diberikan label |𝑓(𝑢) − 𝑓(𝑣)|, label tersebut berbeda untuk setiap busurnya. Pelabelan antiajaib dari graf G adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} sedemikian sehingga bobot simpul (jumlahan dari label busur yang hadir pada simpul yang diberikan) berbeda untuk tiap simpulnya. Pada perkembangannya, terdapat variasi pada pelabelan antiajaib, salah satunya adalah pelabelan simpul antiajaib lokal. Pelabelan antiajaib lokal adalah pemetaan bijektif dari himpunan busur E(G) ke himpunan bilangan bulat {1,…,|E(G)|} dengan bobot simpul yang berbeda untuk tiap simpul yang bertetangga. Nilai minimum dari banyaknya bobot berbeda pada pelabelan simpul antiajaib lokal pada graf G disebut sebagai bilangan kromatik dan dinotasikan sebagai χ_la (G). Untuk kelas graf lintasan, nilai χ_la (P_n )=3. Varian lain dari pelabelan antiajaib ialah pelabelan antiajaib yang diinduksi oleh pelabelan graceful. Pelabelan ini disebut sebagai pelabelan antiajaib graceful. Pelabelan-pelabelan yang telah disebutkan memberikan ide untuk konsep pelabelan antiajaib lokal graceful, yaitu pelabelan antiajaib graceful yang memiliki bobot simpul berbeda untuk tiap simpul yang bertetangga. Penelitian ini akan membahas pelabelan antiajaib lokal graceful untuk graf lintasan P_n. Kemudian, akan ditunjukkan pula bilangan kromatik χ_gla (P_n). ......The graph G consists of a set of vertices V(G) and a set of edges E(G). A graph G with V(G)={v_1,v_2,v_3,…,v_n} and E(G)={v_1 v_2,v_2 v_3,…,v_(n-1) v_n} is called a path graph and denoted as P_n . The graceful labeling (also known as β-valuation) is an injective mapping of the set of vertices from G to the set of integers {0,1,…,|E(G)|} such that if for each edge uv is assigned a label |f(u) - f (v)|, the label is different for each edge. The antimagic labeling of a graph G is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} such that the vertex weights (sum of the edge labels incident at a given vertex) are different for each vertex. In its development, there are variations on antimagic labeling, one of which is local antimagic vertex labeling. Local antimagic labeling is is a bijective mapping from the set of edges E(G) to the set of integers {1,…,|E(G)|} with a different node weight for each neighboring vertex. The minimum value of the number of different weights in the local antimagic vertex labeling on a graph G is called the chromatic number and is denoted as χ_la (G). For path graph, the value of χ_la (P_n)=3. Another variant of antimagic labeling is an antimagic labeling which is induced by graceful labeling. This labeling is called graceful antimagic labeling. These labelings lead to the idea for the concept of graceful local antimagic labeling, namely graceful antimagic labeling that has different weight for each neighboring vertex. This research will discuss about graceful local antimagic labeling on path graphs P_n. It will also be shown the chromatic number χ_gla (P_n).

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Wardhani
Abstrak :

Misalkan 𝐺 = (𝑉, 𝐸) adalah suatu graf sederhana dengan himpunan simpul tak kosong 𝑉 dan himpunan busur 𝐸. Pewarnaan simpul pada graf 𝐺 adalah pemberian warna untuk setiap simpul di 𝐺 dengan satu warna dan setiap dua simpul yang bertetangga memiliki warna yang berbeda. Misalkan pada graf 𝐺 didefinisikan fungsi bijeksi 𝑓: 𝐸 → {1, 2, … , |𝐸|} dengan |𝐸| adalah banyaknya busur. Untuk setiap simpul 𝑣 ∈ 𝑉, bobot simpul 𝑣 adalah 𝑤(𝑣) = ∑𝑒∈𝐸(𝑣) 𝑓(𝑒), dengan 𝐸(𝑣) merupakan himpunan busur yang hadir pada 𝑣. Graf 𝐺 dikatakan graf antiajaib lokal apabila dapat dilakukan pelabelan antiajaib lokal sehingga untuk semua busur 𝑣𝑢 ∈ 𝐸, berlaku 𝑤(𝑣) ≠ 𝑤(𝑢). Dalam hal ini fungsi 𝑓 disebut pelabelan antiajaib lokal pada 𝐺. Bobot simpul berbeda yang dihasilkan dari pelabelan 𝑓 dapat dikatakan sebagai warna simpul yang berbeda. Minimum dari banyaknya warna yang terpakai pada pewarnaan antiajaib lokal di graf 𝐺 disebut bilangan kromatik antiajaib lokal dari 𝐺, 𝜒𝑙𝑎(𝐺). Pada penelitian ini dibahas mengenai pewarnaan simpul antiajaib lokal pada graf sapu ganda 𝐷𝐵𝑛,𝑚 dengan 𝑛 ≥ 4 dan 𝑚 ≥ 2. Graf sapu ganda 𝐷𝐵𝑛,𝑚 didapat dari lintasan 𝑃𝑛 dengan 𝑛 simpul dan dua bintang 𝑆𝑚 dengan 𝑚 + 1 simpul yang kedua simpul daun 𝑃𝑛 merupakan simpul pusat dari masing-masing 𝑆𝑚. Diperoleh bilangan kromatik simpul antiajaib lokal dari graf sapu ganda 𝜒𝑙𝑎(𝐷𝐵𝑛,𝑚) = 2𝑚 + 1.


Let 𝐺 = (𝑉, 𝐸) be a simple graph with non-empty set of vertices 𝑉 and set of edges 𝐸. Vertex coloring on a graph 𝐺 is an assignment color for each vertex of 𝐺, one vertex by one color and two adjacent vertices has different color. Suppose in graph 𝐺 is defined a bijective function 𝑓: 𝐸 → {1, 2, … , |𝐸|} where |𝐸| is number of edges. For every vertex 𝑣 ∈ 𝑉, the weight of vertex 𝑣 is 𝑤(𝑣) = ∑𝑒∈𝐸(𝑣) 𝑓(𝑒),where 𝐸(𝑣) is a set of edges incident to vertex 𝑣. The graph 𝐺 is called as local antimagic if local antimagic labeling could be done so that for all edges 𝑣𝑢 ∈ 𝐸 satisfy 𝑤(𝑣) ≠ 𝑤(𝑢). In this case, function 𝑓 is called local antimagic labeling in 𝐺. A different weight of vertex that produced by the labeling can be seen as a different color of vertex in 𝐺. The minimum number of colors that be used by the local antimagic coloring is called local antimagic chromatic number of 𝐺, 𝜒𝑙𝑎(𝐺). This thesis examines the local antimagic coloring of double broom graph 𝐷𝐵 𝑛,𝑚 with 𝑛 ≥ 4 and 𝑚 ≥ 2. A double broom graph 𝐷𝐵𝑛,𝑚 is obtained from path 𝑃𝑛 with 𝑛 vertices and two stars 𝑆 𝑚 with 𝑚 + 1 vertices where both pendant vertices of 𝑃𝑛 are the center vertices of both 𝑆 𝑚. The vertex antimagic local chromatic number of double broom graph 𝜒𝑙𝑎(𝐷𝐵𝑛,𝑚) = 2𝑚 + 1.

Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Diyah Ayu Permata Sari
Abstrak :
Misalkan graf G = (V (G), E(G)) merupakan graf dengan pasangan himpunan tak kosong simpul V (G) dan busur E(G). Pelabelan total super busur antiajaib lokal pada graf G dengan |V (G)| simpul dan |E(G)| busur didefinisikan sebagai pemetaan bijektif f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} dengan hasil pemetaan simpul f(V (G)) = {1, 2, . . . , |V (G)|}, sedemikian sehingga untuk setiap busur bertetangga uv dan vx di E(G), w(uv) ̸= w(vx), di mana w(uv) = f(u) + f(uv) + f(v). Setiap pelabelan total super busur antiajaib lokal menginduksi pewarnaan busur untuk graf G, di mana busur uv diberikan warna w(uv). Banyaknya warna minimal yang dibutuhkan untuk pewarnaan busur tersebut dikatakan sebagai bilangan kromatik pelabelan total super busur antiajaib lokal, dinotasikan dengan χsleat(G). Graf bunga matahari Sfn merupakan suatu graf yang diperoleh dengan mengambil suatu graf roda dengan simpul pusat c dan subgraf lingkaran dengan simpul-simpul x1, x2, . . . , xn dan tambahan simpul y1, y2, . . . , yn di mana yi dihubungkan oleh busur kepada xi dan xi+1, di mana xn+1 = x1. Pada penelitian ini, akan dikonstruksi pelabelan total super busur antiajaib lokal pada graf bunga matahari Sfn dan juga ditentukan bilangan kromatiknya, yaitu χsleat(Sfn) = n + 1. ......Suppose that a graph G = (V (G), E(G)) be a graph with a nonempty vertices set V (G) and edges set E(G). A super local edge antimagic total labeling on a graph G with |V (G)| vertices and |E(G)| edges defined as a bijective map f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} with the result vertex mapping f(V (G)) = {1, 2, . . . , |V (G)|} such that for any adjacent edges uv and vx in E(G), w(uv) ̸= w(vx), which w(uv) = f(u) + f(uv) + f(v). Each super local edge antimagic total labeling induces an edge coloring for the graph G, where the edge uv ∈ E(G) is assigned to the color w(uv). The minimum number of colors required for the edge coloring is called the chromatic number of super local edge antimagic total labeling, denoted by χsleat(G). The sunflower graph Sfn is a graph obtained by taking a wheel with central vertex c and the n-cycle x1, x2, . . . , xn and additional vertices y1, y2, . . . , yn where yi is joined by edges to xi and xi+1, where xn+1 = x1. In this research, the super local edge antimagic total labeling on sunflower graph Sfn is constructed and its chromatic number also be determined, which χsleat(Sfn) = n + 1.
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library