Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7 dokumen yang sesuai dengan query
cover
Vera Febriani
"Menurut badan kesehatan dunia World Health Organization (WHO) pada tahun 2015, sebanyak 70% penyebab kematian pada penyakit jantung disebabkan oleh penyakit jantung koroner (PJK). Tercatat 17,5 juta kematian atau setara dengan 30,0 % dari total kematian di dunia disebabkan oleh penyakit jantung koroner (WHO, 2017). Penyakit jantung koroner merupakan gangguan fungsi jantung yang disebabkan adanya plaque yang menumpuk di dalam pembuluh darah arteri sehingga mengganggu supply oksigen ke jantung. Hal ini menyebabkan aliran darah ke otot jantung menjadi berkurang dan terjadi defisiensi oksigen. Pada keadaan yang lebih serius dapat mengakibatkan serangan jantung. Faktor risiko penyakit jantung koroner diantaranya adalah Usia, Jenis Kelamin, Hipertensi, Kolesterol, Riwayat Keluarga dan sebagainya. Jika kemungkinan seseorang untuk menderita penyakit jantung koroner dapat diprediksi sejak awal berdasarkan faktor risiko yang ada, maka tingkat kematian akibat penyakit jantung koroner dapat ditekan menjadi lebih rendah.
Tesis ini mengusulkan Model Regresi Logistik Fuzzy untuk memprediksi kemungkinan seseorang untuk menderita penyakit jantung koroner. Tahap pertama dari penelitian ini adalah membangun model prediksi, kemudian mengestimasi nilai parameter dengan menggunakan metode least square. Selanjutnya pada tahap ketiga mengaplikasikan model yang didapatkan untuk memprediksi penyakit jantung koroner. Setelah itu melakukan uji kelayakan atau kesesuaian model dengan metode Mean Degree of Membership dan yang terakhir menghitung akurasi prediksi dengan menggunakan Confusion Matrix.

According to the World Health Organization (WHO) in 2015, as many as 70% of the causes of death in heart disease were caused by coronary heart disease (CHD). It was recorded that 17.5 million deaths or the equivalent of 30.0% of the world's total deaths were caused by coronary heart disease (WHO, 2017). Coronary heart disease is a disorder of heart function caused by plaque that builds up in the arteries so it interferes with oxygen supply to the heart. This causes blood flow to be reduced and oxygen deficiency occurs. In more serious situations it can prevent heart attacks. Risk factors for coronary heart disease are Age, Gender, Hypertension, Cholesterol, Family History and so on. If there is someone who is a victim of coronary heart disease can be predicted from the beginning, then there is likely to arise more.
This thesis proposes a Fuzzy Logistic Regression Model to predict the possibility of a person suffering from coronary heart disease. The first stage of this research is to build a predictive model, then estimate the parameter values using the least square method. Furthermore, in the third stage, apply a model to predict coronary heart disease. After that, test the feasibility or suitability of the model with the Mean Degree of Membership method and finally calculate the prediction accuracy using the Confusion Matrix.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Grady Christanto
"Skripsi ini menggunakan model market Black-Scholes yang dimodifikasi dengan volatilitas stokastik yang dipengaruhi oleh proses Ornstein-Uhlenbeck untuk menentukan harga European option, baik call option maupun put option. Model dikonstruksi dari kasus umum sampai kasus khusus, yaitu harga aset dan volatilitas adalah proses yang tidak saling berkorelasi. Solusi analitik dari harga European option diturunkan untuk kasus khusus dari model market yang dilengkapi minimal martingale measure dengan menggunakan inverse transformasi bilateral Laplace. Eksistensi dan uniqueness dari inverse transformasi bilateral Laplace dari fungsi probabilitas dianalisis terlebih dahulu sebelum menggunakan transformasi integral tersebut untuk menurunkan solusi analitik. Skripsi ini juga membahas bentuk alternatif dari solusi analitik harga European option dengan menggunakan inverse alternatif Post-Widder.

This undergraduate thesis consider the modified Black-Scholes model of financial market with stochastic volatility driven by Ornstein-Uhlenbeck process to price a European option, both call option and put option. The model is constructed from general case to special case, in which asset price and volatility are uncorrelated process. The analytic solution of European option price formula is derived for the special case of the market with respect to the minimal martingale measure using inverse bilateral Laplace transform. Existence and uniqueness of inverse bilateral Laplace transform with respect to probability function will be analyzed before using the integral transform to derive the analytic solution. This undergraduate thesis also provides an alternative form of analytic solusion of the European option price formula using Post-Widder inversion formula.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harits Lazuardi
"ABSTRACT
Model kredibilitas Buhlmann umumnya digunakan untuk memprediksi besar tarif premi untuk setiap pemegang polis pada periode ke-(n+1) berdasarkan riwayat klaim sebanyak periode atau model one period. Pada skripsi ini dilakukan generalisasi terhadap model kredibilitas Buhlmann one period yang disebut sebagai model kredibilitas Buhlmann multiple period. Model multiple period memungkinkan insurer memprediksi besarnya tarif net premium tidak hanya satu periode ke depan tetapi juga beberapa periode ke depan berdasarkan riwayat klaim sebanyak periode. Model yang dibangun memberikan bobot kepada future claim dan anticipating premium. Untuk meminimalkan selisih besarnya premi multiple period terhadap future claim maupun anticipating premium digunakan masalah pemrograman kuadratik. Masalah pemrograman kuadratik diselesaikan dengan menggunakan kondisi Karush-Kuhn-Tucker. Dengan mengaplikasikan konsep model multiple period terhadap data real terlihat bahwa model kredibilitas Buhlmann multiple period memberikan besar tarif premi yang lebih adil untuk setiap pemegang polis dibandingkan menggunakan model kredibilitas one period. Diharapkan dengan menggunakan model multiple period, insurer dapat melakukan perencanaan jangka panjang lebih baik serta meningkatkan keefektifitasan kinerja.

ABSTRACT
Buhlmann credibility model generally used to predict premium tariff for each policyholder at  period based on period history claim or also called one period model. In this thesis, Buhlmann credibility model is generalized or also called multiple period model. Multiple period model allows insurer to predict amount of premium not only one period ahead but also few period ahead based on period history claim. The model is considering two important component, which are future claim and anticipating premium and gives weight for each component. To minimize the difference between premium multiple period and future claim also between premium multiple period and anticipating premium, quadratik programming problem is used on this thesis. Quadratic programming problem is solved by Karush-Kuhn-Tucker conditions. By applying the concept of multiple period models to real data, it can be seen that the Buhlmann multiple period credibility model gives premiums more fair for each policyholder than using the one-period credibility model. By using this model, hopefully insurer enable to conduct long-term financial planning and increase effectiveness of work."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ferren Alwie
"ABSTRACT
Memberikan proteksi terhadap kemungkinan terjadinya kerugian merupakan hal yang sangat penting dalam setiap perusahaan asuransi. Perusahaan asuransi dapat mengestimasi semua risiko yang mungkin dihadapi dengan alat ukur risiko. Value-at-Risk merupakan salah satu alat ukur risiko dalam industri asuransi, yang didefinisikan sebagai kuantil dari distribusi total kerugian. Sebagai kuantil, dapat menjadi kurang representatif apabila terdapat banyak nilai kerugian yang melebihi dikarenakan informasi kerugian pada ekor kanan distribusi tidak tergambarkan dengan baik. Untuk itu, diperkenalkan Tail Value-at-Risk yang merata-ratakan besarnya kerugian yang lebih besar daripada. Penggunaan membantu perusahaan untuk memperoleh gambaran mengenai modal yang harus disiapkan untuk mengatasi risiko yang dapat terjadi. Estimasi risiko yang lebih baik juga dapat dilakukan dengan memanfaatkan teori kredibilitas, yang mengombinasikan risiko individu dan risiko kelompok pemegang polis dengan bobot tertentu. Bobot yang tepat diperoleh melalui peminimuman antara parameter yang memprediksi kerugian di masa depan dan penaksirnya. Secara umum, penelitian ini membahas mengenai model berdasarkan teori kredibilitas Bühlmann beserta penaksir dari parameter-parameter model tersebut. Risiko individu direpresentasikan dengan individu, sementara risiko kelompok direpresentasikan dengan rata-rata individu dalam suatu kelompok. Penerapan model ini dilakukan dengan menggunakan data klaim dari salah satu perusahaan asuransi di Indonesia.

ABSTRACT
Providing protection against losses is important issue in every insurance company. Insurance company could estimate all risks which must be faced by risk measures. Value-at-Risk as one of risk measures that is used in insurance industry, is defined as quantile of aggregate losses distribution. As a quantile, could be less representative if there are losses which far exceed because losses in the right tail distribution cannot be well-explained. For this reason, which averages losses that are greater than was introduced. Using, insurance company could obtain approximation of capital needed due to certain losses which possibly happen. Better risk estimation could also be obtained by credibility theory, which combines both individual and group risk information with certain weights. The proper weights are obtained by minimizing the expected squared error between parameter used to predict future losses and its estimator. In general, Credible model based on credibility theory and the parameters estimator will be derived in this research. Individual risk is represented by certain policyholders meanwhile, group risk is represented by average of every policyholders. Numerical simulation based on one of the insurance companys claim data in Indonesia will also be demonstrated."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhariyansyah
"ABSTRACT
Menurut Pasal 1 Undang-Undang nomor 40 tahun 2014 tentang Perasuransian, reasuransi adalah jasa pertanggungan ulang terhadap risiko yang dihadapi oleh perusahaan asuransi, perusahaan penjamin, atau perusahaan reasuransi lainnya. Ada beberapa macam bentuk reasuransi, salah satunya reasuransi stop-loss. Dalam reasuransi stop-loss, perusahaan asuransi akan menentukan batas kemampuannya dalam menanggung risiko dan sisa dari risiko yang tidak dapat ditanggung akan dialihkan kepada perusahaan reasuransi. Batas kemampuan ini disebut retensi. Oleh karena itu retensi yang optimal diperlukan oleh perusahaan asuransi penting untuk menghindari terjadinya kerugian yang lebih besar. Salah satu cara yang dapat digunakan adalah dengan menggunakan optimisasi ukuran risiko VaR (Value-at-Risk). Akan tetapi, optimisasi ini tidak dapat dilakukan jika diketahui terdapat informasi yang tidak lengkap untuk memperkirakan distribusi dari total loss yang diterima oleh perusahaan asuransi, misalnya hanya terdapat 2 momen pertama dan support yang terdapat pada interval [0,b] dimana b dapat bernilai +. Oleh karena itu, dilakukan suatu pendekatan yang memanfaatkan informasi tidak lengkap ini, yaitu pendekatan distribution-free. Dengan menggunakan pendekatan ini, dapat dilihat hasil bahwa retensi optimal yang diperoleh bergantung pada 2 momen pertama dan kebijakan safety loading yang ditentukan oleh perusahaan reasuransi.

ABSTRACT
According to Article 1 of Law No. 40 of 2014 on Insurance, reinsurance is a service of reinsurance of decisions made by insurance companies, guarantee companies or other reinsurance companies. There are several types of reinsurance, one of them is stop-loss reinsurance. In stop-loss reinsurance, reinsurance company will determine the bound of its ability to guarantee the risk and the remainder of the risk that cannot be guaranteed will be transferred to the reinsurance company. The bound of this ability is called retention. Therefore, optimal retention is needed for the insurance company to prevent bigger loss. One of the way that can be used is optimization of VaR (Value-at-Risk) risk measure. But, this optimization cannot be done if incomplete information is known to estimate the distribution of total loss that accepted by the insurance company, for the example there are only 2 first moments and support in interval [0,b] where b can have value +. Therefore, an approximation that utilizes this incomplete information can be used, this called distribution-free approximation. With this approximation, can be seen the result that the obtained optimal retention is depend on 2 first moments and safety loading obligation that determined by the reinsurance company."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risna Diandarma
"ABSTRACT
Overdispersi sering kali menjadi kendala dalam memodelkan count data dikarenakan distribusi Poisson yang sering digunakan untuk memodelkan count data tidak dapat menanggulangi data overdispersi. Telah diperkenalkan beberapa distribusi yang dapat digunakan sebagai alternatif dari distribusi Poisson dalam menanggulangi overdispersi pada data. Namun, distribusi yang ditawarkan tesebut memiliki kompleksitas yang lebih tinggi dibanding distribusi Poisson dalam hal jumlah parameter yang digunakan. Untuk itu, ditawarkan distribusi baru yang memiliki sebaran mirip dengan distribusi Poisson, yaitu distribusi Lindley. Namun, distribusi Lindley merupakan distribusi kontinu sehingga tidak dapat digunakan untuk memodelkan count data. Oleh karena itu, dilakukan diskritisasi pada distribusi Lindley menggunakan metode yang mempertahankan fungsi survival dari distribusi Lindley. Distribusi hasil dari diskritisasi distribusi Lindley tersebut memiliki satu parameter dan dapat digunakan untuk memodelkan data overdispersi sehingga cocok digunakan sebagai alternatif dari distribusi Poisson dalam memodelkan count data yang overdispersi. Distribusi hasil dari diskritisasi distribusi Lindley tersebut biasa disebut distribusi Discrete Lindley. Dalam penulisan ini diperoleh karakteristik dari distribusi Discrete Lindley yang unimodal, menceng kanan, memiliki kelancipan yang tinggi, dan overdispersi. Berdasarkan simulasi numerik, diperoleh pula karakteristik dari parameter distribusi Discrete Lindley yang memiliki bias dan MSE besar pada sekitaran nilai parameter exp(-1).

ABSTRACT
Overdispersion often being a problem in modeling count data because the Poisson distribution that is often used to modeling count data cannot conquer the overdispersion data. Several distributions have been introduced to be used as an alternative to the Poisson distribution on conquering dispersion in data. However, that alternative distribution has higher complexity than Poisson distribution in the number of parameters used. Therefore, a new distribution with similar distribution to Poisson is offered, that is Lindley distribution. Lindley distribution is a continuous distribution, then it cannot be used to modeling count data. Hence, discretization on Lindley distribution should be done using a method that maintain the survival function of Lindley distribution. Result distribution from discretization on Lindley distribution has one parameter and can be used to modeling overdispersion data so that distribution is appropriate to be used as an alternative to Poisson distribution in modeling overdispersed count data. The result distribution of Lindley distribution discretization is commonly called Discrete Lindley distribution. In this paper, characteristics of Discrete Lindley distribution that are obtained are unimodal, right skew, high fluidity and overdispersion. Based on numerical simulation, another charasteristic of parameter is also obtained from Discrete Lindley distribution that has a large bias and MSE when parameter value around exp(-1)."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stefany Nurhatika
"

Analisis triclustering merupakan pengembangan dari analisis clustering dan biclustering. Analisis triclustering bertujuan mengelompokkan data tiga dimensi secara simultan yang menghasilkan submatriks dinamakan tricluster. Pendekatan yang digunakan dalam analisis triclustering di antaranya adalah pendekatan berdasarkan greedy dan pattern. Salah satu contoh pendekatan analisis triclustering berdasarkan greedy adalah metode  Î´ – Trimax. Sedangkan salah satu contoh analisis triclustering berdasarkan pattern adalah metode Timesvector. Metode δ – Trimax bertujuan menghasilkan tricluster yang memiliki mean square residual kecil dari threshold  dengan volume data tricluster yang maksimal. Metode Timesvector bertujuan mengelompokkan matriks data yang menunjukkan pola yang sama atau berbeda pada data tiga dimensi. Implementasi metode  Î´ – Trimax dan metode Timesvector pada penelitian ini dilakukan pada data ekspresi gen pasien penderita penyakit periodontitis. Ekspresi gen diukur pada 14 titik kondisi dan 4 titik waktu. Berdasarkan beberapa skenario yang telah diterapkan, metode Î´ – Trimax memberikan hasil terbaik pada saat menerapkan skenario dengan nilai threshold =0,0028564 dan =1,25 dengan jumlah tricluster yang dihasilkan adalah 260 tricluster. Dari 260 tricluster tersebut, dipilih tricluster ke-216 yang dianalisis dengan menggunakan metode Timesvector. Hasil tricluster yang diperoleh dapat menambah wawasan bagi ahli medis dalam memberikan periodontal treatment kepada pasien penderita periodontitis berikutnya.


Triclustering analysis is the development of clustering and biclustering. Triclustering analysis aims to group three-dimensional data simultaneously, forming the initial subspace known as a tricluster. It utilizes two main approaches that are greedy-based and pattern-based approaches, exemplified by the δ – Trimax and Timesvector methods, respectively. The δ – Trimax method aims for triclusters with smaller mean square residuals than the threshold δ, while Timesvector groups data matrices with similar or different patterns. In a study on periodontitis patients gene expression data, comprising 14 condition points and 4 time points, both methods were implemented. The δ – Trimax method yielded optimal results under specific conditions (δ = 0.0028564, λ = 1.25), producing 260 triclusters. Among these, the 216th tricluster was selected for further analysis using the Timesvector method. The insights gained from these triclusters can enhance periodontal treatment strategies for patients with subsequent periodontitis, providing valuable guidance to medical experts.

 

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library