Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11 dokumen yang sesuai dengan query
cover
Rangga Kharisma Putra
"ABSTRAK
Tren belanja yang terus meningkat mendorong tumbuhnya bisnis e-commerce di Indonesia yang salah satunya adalah suatu perusahaan e-commerce di Indonesia. Salah satu peran penting untuk mendukung bisnis e-commerce adalah kategorisasi produk yang baik. Kategorisasi produk yang baik akan membuat pencarian produk sesuai dengan kebutuhan dari pelanggan. Hal ini berdampak baik pada tingkat penjualan, pengalaman pengguna, maupun pengelolaan produk di sisi internal perusahaan. Akan tetapi, terdapat temuan kesalahan kategori yang penyebab utamanya adalah proses kategorisasi yang masih bersifat manual, berulang, dan massive.
Penelitian ini bertujuan untuk membantu menyelesaikan permasalahan tersebut dengan membuat suatu model yang mampu melakukan klasifikasi produk secara otomatis. Data yang digunakan adalah judul produk, sedangkan untuk label adalah kategori dari setiap produk. Penelitian ini melakukan percobaan terhadap dua representasi yaitu bag-of-words (BoW) dan TF-IDF. Selain itu, penelitian ini menggunakan algoritma naïve bayes dan SVM dalam percobaannya.
Hasil dari penelitian ini didapatkan model yang mampu melakukan klasifikasi produk salah satu perusahaan e-commerce secara baik. Kombinasi BoW dan SVM mampu menghasilkan model performa yang terbaik dengan nilai akurasi 96.40% dan F-measure 95.90%. Selain itu dari penelitian ini didapatkan hasil representasi BoW memberikan performa yang lebih baik dibandingkan dengan TF-IDF.

ABSTRACT
The increasing shopping trend encourages the growth of e-commerce businesses in Indonesia, one of which is e-commerce company in Indonesia. On of the important role to support e-commerce business is well-managed product categorization. Good product categorization will impact the product search according to the customer needs. This will affect the level of sales, user experience, and product management in the internal side of the company. However, some errors were found in the product category, the main causes are the manual categorization, repetitive, and massive process.
This study is aimed to solve the problem by making a model that able to classify products automatically. The data that used in this study is the product title, while the label is the category of each product. This study conducted experiments on two representations; bag-of-words (BoW) and TF-IDF. In addition, this study is using naïve bayes and SVM algorithms in the experiment.
This study resulted a model that able to classify one of e-commerce company products properly. The combination of BoW and SVM is able to produce the best performance model with an accuracy value of 96.40% and F-measure 95.90%. On the other hand, the results of the BoW representation provided the better performance than the TF-IDF."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Yenny Sari
"Salah satu tantangan utama organisasi di era globalisasi ini adalah bagaimana mengarahkan perkembangan organisasi ke arah berkelanjutan yang ideal. Setiap tingkat kesiapan membutuhkan rubrik kapabilitas dan indikator yang berbeda. Oleh karena itu, penelitian ini bertujuan untuk mengembangkan Corporate Sustainability Maturity Model (CSMM), yang dapat digunakan oleh organisasi untuk melakukan penilaian diri, mengidentifikasi tingkat kesiapan organisasi saat ini dan transisi ke organisasi berkelanjutan yang lebih matang. Pengembangan CSMM dilakukan dengan menggunakan strategi tiga tahap pengembangan maturity model yaitu scoping, designing dan evaluating. Rancangan CSMM yang melibatkan tinjauan pustaka secara masif, wawancara 7 praktisi dan keterlibatan lebih dari 100 organisasi sebagai narasumber ini menghasilkan 6 domain dan 23 sub-domain; rubrik kapabilitas dan indikator yang didefinisikan untuk 3 tingkat kematangan. CSMM ini kemudian dievaluasi melalui penerapan pada organisasi secara riil melalui dua metode: (i) metode kuesioner & wawancara dan (ii) metode text mining. Berdasarkan temuan, sebagian besar organisasi Indonesia telah menerapkan aktivitas keberlanjutan secara optimal tapi bersifat parsial, tanpa didahului perencanaan strategis atau mengakomodasi tekanan internal dan eksternal yang mendorong upaya keberlanjutan tersebut. Secara keseluruhan, CSMM ini dapat diklaim sebagai sustainability maturity model yang pertama yang dikembangkan dalam menilai kesiapan penerapan prinsip berkelanjutan dalam konteks praktik di Indonesia. Selain itu, penggunaan metode text mining selama proses penilaian dan pembuatan aplikasi pintar sehingga organisasi dapat melakukan penilaian tingkat kematangan secara mandiri dapat diklaim sebagai "angin segar" bagi penelitian dengan topik sejenis.

One of the main challenges of organisations in this era of globalisation is how to navigate their development into ideal sustainable organisations. However, each readiness level requires a different rubric of requirements and indicators. Therefore, this study develops a corporate sustainability maturity model (CSMM), which can be used by organisations to conduct self-assessments, identify their current sustainability maturity levels and transition into mature sustainable organisations. A three-step development strategy was used to develop the proposed CSMM, i.e. the stages of scoping, designing and evaluating. The proposed CSMM includes 6 maturity domains and 23 sub-domains, and the rubric of requirements and indicators were defined among 3 maturity levels. The verified CSMM was then evaluated by assessing real-world organisations. Two methods were applied during the stage of evaluating CSMM: (i) interview & questionnaire assessment method and (ii) text mining assessment method. Based on the findings, most of Indonesian organisations conducted sustainability activities independently, without having a strategic plan in place or accommodating the internal and external pressures that drive the organisational sustainability efforts. Overall, this CSMM can be claimed as the first sustainability maturity model developed for readiness assessment in an Indonesian context. Additionally, based on this CSMM, the usage of text mining method to assess the companies and the creation of smart application so that the organisations are able to do their self-assessment can be claimed as “fresh air” for the researches on similar topics"
Depok: Fakultas Teknik Universitas Indonesia, 2020
D-Pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Cindy Hosea
"E-commerce merupakan online platform yang sedang mengalami pertumbuhan pesat dan memberikan kontribusi terhadap perekonomian internet di Indonesia selama lima tahun terakhir. E-commerce menghasilkan ulasan konsumen yang merupakan sumber informasi bagi para pemangku kepentingan. Penelitian ini melakukan analisis big data terhadap 132.085 ulasan konsumen online mengenai ponsel Xiaomi yang ditulis pada tiga situs e-commerce terbesar di Indonesia: Shopee, Bukalapak, dan Blibli dengan text mining, untuk mengidentifikasi distribusi topik, menganalisis jaringan asosiasi semantik, menemukan perbedaan pada ketiga situs, dan menganalisis hubungan antara topik dan skor penilaian ulasan. Hasil penelitian menunjukkan bahwa logistik merupakan topik yang paling banyak didiskusikan pada ketiga situs, sementara kualitas pelayanan lebih banyak didiskusikan pada Consumer-to-Consumer (C2C) daripada Business-to-Consumer (B2C) e-commerce. Atribut ponsel lebih banyak didiskusikan pada Bukalapak dan Blibli, dengan fokus topik sistem dan CPU & perangkat keras. Jaringan ulasan konsumen Bukalapak membentuk scale-free network, sementara jaringan kedua situs lainnya hanya menunjukkan karakteristik dari small-world network. Hasil regresi logistik ordinal menunjukkan bahwa 5 dari 8 topik yang dibahas dalam komentar ulasan memiliki hubungan negatif dengan skor penilaian, serta ulasan bernilai rendah cenderung memiliki komentar yang lebih panjang dan spesifik. Hasil penelitian dapat bermanfaat sebagai wawasan untuk pengembangan bagi para pemangku kepentingan di industri e-commerce.

E-commerce is a rapidly growing online platform that contributes to Indonesias internet economy during the past five years. E-commerce generates customer reviews as a source of information for stakeholders. This study applies big data analytics toward 132,085 online reviews about Xiaomi mobile phones posted on three major e-commerce websites in Indonesia: Shopee, Bukalapak, and Blibli by text mining, in identifying their distribution of topics, analyzing semantic association network, determining differences between the three websites, also analyzing the relationship between topics and rating score. The findings show that logistics is the most highly discussed topic, while service quality is discussed more in Consumer-to-Consumer (C2C) rather Business-to-Consumer (B2C) e-commerce. Phone attributes are discussed more in Bukalapak and Blibli, focusing on system and CPU & hardware topics. The network of Bukalapaks customer reviews form a scale-free network, and the other two only have the characteristics of a small-world network. The overall results from multilinear regression and ordinal logistic regression show that 5 out of 8 topics reviewed have negative relationships with rating scores, and low-rated reviews tend to have longer and more specific review comments. The findings provide insights for e-commerce stakeholders in supporting further development."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Panjaitan, Yantine Arsita Br. author
"Peningkatan aksesibilitas koleksi perpustakaan, khususnya koleksi skripsi, tesis, dan disertasi perlu dilakukan, mengingat jumlah koleksi yang tinggi, namun sistem pengelolaan saat ini masih didasarkan pada kedatangan koleksi di Perpustakaan Universitas Indonesia. Untuk mengelola koleksi tersebut dibutuhkan kategori-kategori yang dapat mewakili skripsi, tesis, dan disertasi. Penelitian ini dilakukan untuk menentukan kategori-kategori tersebut melalui pengolahan data abstrak setiap skripsi, tesis, dan disertasi pada tahun 2005-2015 dengan salah satu algoritma clustering, yaitu Self-Organizing Map. Melalui penelitian ini ditemukan 139 kategori yang dapat mewakili skripsi, tesis, dan disertasi, yang akan digunakan untuk mengelompokkan skripsi, tesis, dan disertasi Universitas Indonesia.

Accessibility improvement of library collection, in particular undergraduate thesis, post-graduate thesis, and dissertation needs to be done, given the high number of collection, but the current management system is still based on the arrival of collection in Universitas Indonesia?s Library. Categories that can represent undergraduate thesis, post-graduate thesis, and dissertation are required in order to manage those collections. This research aims to determine categories through abstract data processing of each undergraduate thesis, post-graduate thesis, and dissertation in 2005-2015 with a clustering algorithm, namely Self-Organizing Map. This study found 139 categories that can represent undergraduate thesis, postgraduate thesis, and dissertation, that can be used to classify those collections."
Depok: Universitas Indonesia, 2016
14-21-050822194
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bern Jonathan
"Female Daily Network perusahaan yang bergerak di bidang media sosial. Female Daily
memiliki media sosial untuk membagikan pengalaman menggunakan produk kecantikan
bernama Female Daily. Female Daily memiliki peraturan untuk tidak menggunakan
Female Daily Platform untuk mempromosikan, menjual produk, dan layanan di platform
media sosial di Female Daily. Namun, pengguna di Female Daily terkadang melanggar
peraturan tersebut di post mereka dan menyebabkan pengguna lain terganggu akan hal
tersebut. Admin di Female Daily kesulitan untuk mengidentifikasi pengguna yang
melanggar aturan itu dan melarang post mereka yang berisi penjualan produk karena
keterbatasan jumlah admin dengan jumlah post yang masuk tiap hari. Text mining juga
dapat mengatasi permasalahan ini dengan menentukan klasifikasi secara otomatis dengan
membuat sistem yang melakukan proses pembelajaran dengan dari kata-kata post yang
tersedia. Algoritme yang bisa digunakan untuk melakukan proses text mining pada
penelitian ini seperti Support Vector Machine (SVM), Naïve Bayes (NB), Decision Tree
(DT), dan Random Forest (RF). Penelitian ini menggunakan kombinasi cara ekstraksi
fitur, fitur kontekstual, dan melakukan balancing data. Penelitian ini menggunakan
skenario penelitian untuk menganalisis ekstraksi fitur, penggunaan fitur kontekstual, dan
balancing data. Algoritme terbaik dilihat dari nilai recall pada kombinasi algoritme dan
fitur penelitian ini adalah Random Forest TF-IDF Unigram dan menggunakan tambahan
fitur kontekstual deteksi uang dan kata-kata menjual dengan data yang seimbang. Nilai
recall 88.37% didapatkan dari hasil kombinasi algoritme dan fitur tersebut.

Female Daily Network is a company engaged in social media. Female Daily has social
media to share experiences using beauty products called Female Daily. Female Daily has
regulations not to use the Female Daily Platform to promote, sell products and services
on social media platforms in Female Daily. However, users on Female Daily sometimes
violate these rules in their posts and cause other users to be annoyed about it. Admins at
Female Daily have difficulty identifying users who violate these rules and ban their posts
containing product sales due to the limited number of admins with the number of posts
that enter each day. Text mining can also overcome this problem by determining the
classification automatically by creating a system that carries out the learning process
from the available post words. Algorithms that can be used to carry out the text mining
process in this research are Support Vector Machine (SVM), Naïve Bayes (NB), Decision
Tree (DT), and Random Forest (RF). This study uses a combination of feature extraction,
contextual features, and data balancing. This study uses research scenarios to analyze
feature extraction, contextual feature usage, and data balancing. The best algorithm seen
from the recall value in the combination of algorithms and features of this research is the
Random Forest TF-IDF Unigram and uses additional contextual features to detect money
and selling words with balanced data. The recall value of 88.37% is obtained from the
results of the combination of these algorithms and features.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia , 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wishnu Hardi
"Kedutaan Besar Australia di Jakarta menyimpan beragam dokumen rilis media. Menganalisis koleksi dokumen yang berpola khusus dan vital sangatlah penting untuk menghasilkan wawasan baru dan pengetahuan tentang kelompok topik penting dari dokumen. K-Means digunakan sebagai metode pengelompokan data non-hirarkis objek data menjadi klaster. Metode ini bekerja dengan meminimalkan variasi data di dalam klaster dan memaksimalkan variasi data di antara klaster. Dari dokumen yang dikeluarkan antara 2006 dan 2016, 839 dokumen diperiksa untuk menentukan frekuensi jangka dan untuk menghasilkan klaster. Evaluasi dilakukan dengan menunjuk seorang ahli untuk memvalidasi hasil klaster. Hasil penelitian menunjukkan bahwa ada 57 istilah bermakna yang dikelompokkan menjadi 3 kelompok. “Hubungan orang-orang”, “kerja sama ekonomi”, dan “pembangunan manusia” dipilih untuk mewakili topik rilis media Kedutaan Besar Australia Jakarta dari tahun 2006 hingga 2016. Penelitian ini menyimpulkan bahwa text mining dapat digunakan untuk mengelompokkan topik dokumen. Ini memberikan proses pengelompokan yang lebih sistematis karena analisis teks dilakukan melalui sejumlah tahapan dengan parameter yang ditetapkan secara khusus."
Jakarta: Pusat Jasa Perpustakaan dan Informasi, 2019
020 VIS 21:1 (2019)
Artikel Jurnal  Universitas Indonesia Library
cover
Rino Supriadi Putra
"ABSTRAK

Pariwisata Indonesia adalah salah satu penyumbang terbesar devisa negara. Pada 2015 devisa yang dihasilkan sektor pariwisata adalah sebesar $ 12,23 miliar dan diproyeksikan bahwa pada tahun 2020 akan memberikan kontribusi devisa negara sebesar $ 20 miliar. Kemajuan teknologi secara fundamental telah mengubah cara informasi diproduksi dan digunakan untuk banyak hal termasuk di sektor pariwisata. Dalam industri pariwisata, pengalaman pelanggan penting untuk pengembangan dan reputasi industri. Diperlukan pendekatan baru untuk mengukur tingkat kepuasan pelanggan dan persepsi wisatawan melalui analisis sentimen. Dalam penelitian ini permasalahan yang menjadi perhatian adalah bagaimana memanfaatkan analisis sentimen untuk menentukan persepsi wisatawan mengenai 3A (atraksi, amenitas, dan aksesibilitas) di destinasi wisata dan mengukur korelasi antara persepsi wisatawan dengan tingkat pertumbuhan wisatawan, menggunakan metode text mining NLP (Natural Language Processing) untuk mengembangkan strategi peningkatan kunjungan wisatawan dan pengembangan destinasi wisata. Hasil dari penelitian yang dilakukan didapatkan hasil terdapat korelasi negatif yang kuat antara sentimen negatif dengan tingkat pertumbuhan kunjungan wisatawan. Tingkat pertumbuhan wisatawan akan menurun ketika sentimen negatif dari wisatawan meningkat. Penurunan tingkat pertumbuhan wisatawan berdampak pada potensi hilangnya pendapatan negara. Analisis sentimen dapat memberikan gambaran persepsi wisatawan secara lengkap terkait aspek amenitas, aksesibilitas, dan atraksi di destinasi pariwisata.


ABSTRACT


Indonesian tourism is one of the biggest contributors to the countrys foreign exchange. In 2015 the foreign exchange generated by the tourism sector was $ 12:23 billion and it is projected that in 2020 will Contribute to the countrys foreign exchange of $ 20 billion. Technological advances have fundamentally changed the way information is produced and used for many things Including in the tourism sector. In the tourism industry, customer experience is important for the development and reputation of the industry. A new approach is needed to measure customer satisfaction and tourist perceptions through sentiment analysis. In this study the goal is how to use sentiment analysis to Determine the perceptions of tourists regarding 3A (attractions, amenities and accessibility) in tourist destinations and measure the correlation between perceptions with tourist tourist growth rates, using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. using the NLP (Natural Language Processing) text mining method to develop strategies for increasing tourist visits and developing tourist destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations. The results of the research Showed that there was a strong negative correlation between negative sentiment and the level of tourist tourist growth. The level of tourist growth when the negative sentiment will Decrease from tourists increases. Tourist Declining growth rates have an impact on the potential loss of state income. Sentiment analysis can provide a complete description of tourist perceptions regarding aspects of amenities, accessibility, and Attractions in tourism destinations.

 

"
2020
T55380
UI - Tesis Membership  Universitas Indonesia Library
cover
Yosia Rimbo Deantama
"ABSTRAK
Pangan merupakan hak asasi manusia yang harus senantiasa terpenuhi oleh masyarakat dengan daya beli yang sesuai dan mempunyai kualitas pangan yang tinggi dan aman. Hal tersebut mendorong kedaulatan pangan suatu negara, yang secara mandiri memenuhi kebutuhan pangan masyarakatnya berdasarkan sistem pangan yang adil bagi seluruh masyarakat. Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 2015 yang mewajibkan adanya sistem informasi tentang pangan dan gizi dan teori evolusi e-government 3.0. Oleh karena itu salah satu solusi yang mendukung peraturan tersebut dan pendekatan e-government 3.0 adalah dengan pendekatan text mining. Penelitian ini mengolah data dari LAPOR! dan berita daring mengenai kedaulatan pangan untuk mengekstrak informasi dan menemukan pola-pola yang akan menghasilkan informasi tentang kedaulatan pangan di Indonesia sehingga dapat membantu pengambilan keputusan yang berdasar pada data melalui representasi visualisasi berbasis web. Jenis analisis informasi yang digunakan adalah Klasifikasi Dokumen untuk penyaringan dokumen, Named Entitiy Recognition yang digunakan untuk mengetahui entitas lokasi dan komoditas pangan dari data tekstual, dan Topic Modelling untuk menemukan topik dari sekumpulan teks dokumen berita dan aduan LAPOR!. Algoritma yang dipakai dalam penelitian ini adalah Conditional Random Fields dan Conditional Markov Model untuk implementasi Named Entity Recognition. Latent Dirichlet Allocation dan Non-Negative Matrix Factorization untuk implementasi Topic Modelling. Selain itu Naïve Bayes, Support Vector Machine, dan Logistic Regression digunakan untuk klasifikasi dokumen. Sedangkan pemilihan model ini menggunakan Conditional Random Field dengan nilai F1-score pada entitas lokasi sebesar 83.85 dan entitas komoditas pangan sebesar 90.98 yang digunakan pada data berita daring, pada data aduan LAPOR!, entitas lokasi menggunakan Conditional Markov Model dengan nilai F1-Score sebesar 60.35 dan entitas komoditas pangan sebesar 89.74. Pada klasfikasi dokumen, model Support Vector Machine dengan fitur unigram memiliki nilai presisi sebesar 92.00. Pada Topic Modelling, model Non-Negative Matrix Factorization memiliki nilai coherence yang lebih tinggi daripada Latent Direchlete Allocation pada tiga eksperimen dengan dataset yang berbeda. Di samping itu, dilakukan visualisasi tentang kedaulatan pangan berdasarkan pengolahan data tersebut di atas untuk memudahkan pengambilan kebijakan oleh pimpinan seperti Tim Ahli di Kantor Staf Presiden.

ABSTRACT
Food is a human right that must always be fulfilled by the society with the appropriate purchasing power and high and safe food quality. This encourages food sovereignty of a country, which independently meets the food needs of its people based on a food system that is fair to the entire community. Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 2015 requires an information system on food and nutrition and the theory of e-government 3.0 evolution. Therefore, one solution that supports these regulations and the e-government 3.0 approach is the text mining approach. This research processes data from LAPOR! and online news on food sovereignty to extract information and find patterns that will produce information on food sovereignty in Indonesia so that it can assist decision-making based on data through web-based visualization representation. The type of information analysis used is Document Classification for document filtering, Named Entity Recognition which is used to find out location entities and food commodities from textual data, and Topic Modeling to find topics from a collection of text news documents and complaints LAPOR !. The algorithm used in this study is Conditional Random Fields and Conditional Markov Models for the implementation of Named Entity Recognition. Latent Dirichlet Allocation and Non-Negative Matrix Factorization for the implementation of Topic Modeling. In addition Naïve Bayes, Support Vector Machine, and Logistic Regression are used for document classification. Whereas the selection of this model uses Conditional Random Field with an F1-score value for location entities of 83.85 and a food commodity entity of 90.98 used in online news data. In the LAPOR! Complaint data, the location entity uses Conditional Markov Model with an F1-Score value of 60.35 and food commodity entities amounting to 89.74. In classifying documents, the Support Vector Machine model with unigram features has a precision value of 92.00. In Topic Modeling, the Non-Negative Matrix Factorization model has a higher coherence value than the Latent Direchlete Allocation in three experiments with different datasets. In addition, visualization of food sovereignty is based on the processing of the data above to facilitate policy making by leaders such as the Expert Team at the Kantor Staf Presiden.

"
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Iqbal Hadiyan
"PT. Indosat Tbk adalah salah satu perusahaan yang berkembang pada industri telekomunikasi. Namun, PT. Indosat Tbk memiliki permasalahan mengenai customer satisfaction yang cenderung menurun dari tahun ke tahun. Data media sosial, terutama twitter, menawarkan data mengenai opini publik yang sangat padat. Namun data twitter yang masih bersifat unstructured diperlukan proses lebih lanjut untuk dapat menemukan dimensi-dimensi beserta sentimen masyarakat terhadap dimensi tersebut. Latent Dirichlet Allocation (LDA) dengan Generative Statistical modelnya memungkinkan suatu set data pengamatan dapat dijelaskan oleh kelompok yang tidak teramati. Penelitian ini menentukan 30 kelompok kata representatif dari hasil LDA. Hasilnya terdapat 18 dimensi yang paling banyak dibicarakan mengenai Indosat pada linimasa twitter. Dimensidimensi tersebut mewakili 14 dimensi yang sudah ditemukan pada penelitian-penelitian sebelumnya mengenai kepuasan pelanggan pada layanan telekomunikasi, bahkan dengan LDA mendapatkan dimensi lebih detail dan lebih real time. Masing-masing dokumen dalam dimensi tersebut diberi label sentimennya, dan ditentukan akurasinya menggunakan supervised classification, hasilnya adalah 72% akurasi dengan model Naive Bayes Classification. Mengabaikan sentimen netral, sentimen negatif Indosat masih lebih tinggi daripada sentimen positifnya, yaitu dengan 16% sentimen negatif. Persentase negatif tersebut masih didominasi dengan dimensi berkaitan dengan layanan Indosat. Sementara dominasi sentimen positif ada pada dimensi yang berhubungan dengan ketersediaan layanan untuk pengguna.

PT. Indosat Tbk is One of the companies developing in the telecommunications industry. However, PT. Indosat Tbk is very concerned about customer satisfaction which tends to decrease from year to year. Social media media, especially Twitter, offer data about public opinion that is very crowded. However, the twitter data that is still unstructured requires a further process to be able to find the dimensions and sentiments of the community towards that dimension. Latent Dirichlet Allocation (LDA) with the Generative Statistics model allows a monitoring data set to be accessed by unobserved groups. This study determines 30 groups of words that represent the results of the LDA. There are 18 dimensions that are most talked about about Indosat on the Twitter timeline. These dimensions represent the 14 dimensions found in previous studies of customer satisfaction in telecommunications services, even with LDA getting more detailed and more real-time dimensions. Each document in this dimension is labeled sentiment, and its accuracy is determined using a supervised classification, obtained 72% accuracy with the Naive Bayes Classification model. Ignoring the negative sentiment, Indosat's negative sentiment was still higher than the positive sentiment, namely with a 16% negative sentiment. The negative percentage is still a comparison with Indosat services. While the dominance of positive sentiment is in the dimensions associated with service support for users."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Marcel Christianis
"Peer-to-peer accommodation (P2P) adalah model ekonomi berbagi yang telah merubah industri akomodasi dengan cara yang belum pernah terjadi sebelumnya. Namun, perbedaan akomodasi P2P yang ditandai oleh beragam jenis akomodasi dan kurangnya standar kualitas menyiratkan bahwa apa yang di rasakan para tamu akomodasi P2P berbeda dari hotel. Oleh karena itu, penting untuk menyelidiki atribut akomodasi P2P untuk memahami pengalaman para tamu. Studi ini mengeksplorasi pemahaman akomodasi P2P dengan mengidentifikasi topik dan atribut penting dari ulasan pelanggan melalui beberapa perspektif; kota, peringkat, dan waktu. Penelitian ini mengambil pendekatan penambangan teks pada dataset 55.377 ulasan pelanggan Airbnb dari daftar 10 kota paling banyak dikunjungi di Indonesia (berdasarkan jumlah kedatangan asing). Studi ini mengidentifikasi bahwa atribut yang terkait dengan lokasi, tuan rumah, kamar, fasilitas, kemudahan, harga, komunitas, dan keamanan, dapat dikaitkan dengan pengalaman para tamu di akomodasi P2P. Studi ini juga melihat bagaimana atribut-atribut ini digunakan dalam konteks berbagai kota, peringkat, dan waktu. Temuan ini dapat memperkuat definisi atribut akomodasi P2P yang ditetapkan dalam penelitian sebelumnya.

Peer-to-peer accommodation (P2P) is a sharing economy model that has disrupted the accommodation industry in an unprecedented way. However, differences of P2P accommodation characterized by diverse accommodation types and a lack of quality standard implies that guests may perceive P2P accommodation differently from hotels. Hence, there is an increase in importance to investigate P2P accommodation attributes to understand guests' experience. This study explores how people perceive P2P accommodation by identifying important topics and attributes from customer reviews through several perspectives; city, ratings, and time. This study took a text-mining approach on a dataset of 55,377 Airbnb customer reviews from listings in the top 10 most visited cities in Indonesia (based on the number of foreign arrivals). This study identified that attributes related to location, host, room, facility, amenity, price, community, and security, are associated with guests' experience in P2P accommodation. This study also looks into how these attributes are used in the context of different cities, ratings, and time. These findings can strengthen the definition of P2P accommodation attributes established in prior research."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2   >>